Advances in Ultrametric Analysis (Contemporary Mathematics)
AMS | English | 2018 | ISBN-10: 1470434911 | 296 pages | PDF | 2.54 MB
AMS | English | 2018 | ISBN-10: 1470434911 | 296 pages | PDF | 2.54 MB
by Alain Escassut (Editor), Cristina Perez-garcia (Editor), Khodr Shamseddine (Editor)
This book contains the proceedings of the 14th International Conference on $p$-adic Functional Analysis, held from June 30-July 5, 2016, at the Universite d'Auvergne, Aurillac, France. Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of p -adic series, rational maps on the projective line over Q p , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, G -modules with a convex base, non-compact Trace class operators and Schatten-class operators in p -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Koethe spaces, p -adic Nevanlinna theory and applications, and sub-coordinate representation of p -adic functions. Moreover, a paper on the history of p -adic analysis with a comparative summary of non-Archimedean fields is presented. Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.