Tags
Language
Tags
January 2025
Su Mo Tu We Th Fr Sa
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

Statistics with R - Intermediate Level

Posted By: Sigha
Statistics with R - Intermediate Level

Statistics with R - Intermediate Level
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 1.81 GB
Genre: eLearning Video | Duration: 33 lectures (2 hour, 24 mins) | Language: English

Statistical analyses using the R program


What you'll learn

run parametric and non-parametric correlation (Pearson, Spearman, Kendall)
perform partial correlation
run the chi-square test for association
run the independent sample t test
run the paired sample t test
execute the one-way analysis of variance
perform the two-way and three-way analysis of variance
run the one-way multivariate analysis of variance
run non-parametric tests for mean difference (Mann-Whitney, Kruskal-Wallis, Wilcoxon)
execute the multiple linear regression
compute the Cronbach's alpha
compute other reliability indicators (Cohen's kappa, Kendall's W)


Requirements

R and R studio
knowledge of statistics

Description

If you want to learn how to perform the most useful statistical analyses in the R program, you have come to the right place.

Now you don’t have to scour the web endlessly in order to find how to do a Pearson or Spearman correlation, an independent t test or a factorial ANOVA, how to perform a sequential regression analysis or how to compute the Cronbach’s alpha. Everything is here, in this course, explained visually, step by step.

So, what will you learn in this course?

First of all, you will learn how to perform association tests in R, both parametric and non-parametric: the Pearson correlation, the Spearman and Kendall correlation, the partial correlation and the chi-square test for independence.

The test of mean differences represent a vast part of this course, because of their great importance. We will approach the t tests, the analysis of variance (both univariate and multivariate) and a few non-parametric tests. For each technique we will present the preliminary assumption, run the procedure and carefully interpret all the results.

Next you will learn how to perform a multiple linear regression analysis. We have assign several big lectures to this topic, because we will also learn how to check the regression assumptions and how to run a sequential (or hierarchical) regression in R.

Finally, we will enter the territory of statistical reliability – you will learn how to compute three important reliability indicators in R.
So after graduating this course, you will get some priceless statistical analysis knowledge and skills using the R program. Don’t wait, enroll today and get ready for an exciting journey!

Who this course is for:

students
PhD candidates
academic researchers
business researchers
University teachers
anyone looking for a job in the statistical analysis field
anyone who is passionate about quantitative analysis

Statistics with R - Intermediate Level


For More Courses Visit & Bookmark Your Preferred Language Blog
From Here: English - Français - Italiano - Deutsch - Español - Português - Polski - Türkçe - Русский


Download Links