Machine Learning for Data Analysis Unsupervised Learning
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2 Hours | Lec: 49 | 553 MB
Genre: eLearning | Language: English
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2 Hours | Lec: 49 | 553 MB
Genre: eLearning | Language: English
Machine Learning made simple with Excel! Unsupervised learning topics for advanced data analysis & business intelligence
This course is PART 4 of a 4-PART SERIES designed to help you build a strong, foundational understanding of Machine Learning:
PART 1: QA & Data Profiling
PART 2: Classification Modeling
PART 3: Regression & Forecasting
PART 4: Unsupervised Learning
This course makes data science approachable to everyday people, and is designed to demystify powerful Machine Learning tools & techniques without trying to teach you a coding language at the same time.
Instead, we'll use familiar, user-friendly tools like Microsoft Excel to break down complex topics and help you understand exactly HOW and WHY machine learning works before you dive into programming languages like Python or R. Unlike most Data Science and Machine Learning courses, you won't write a SINGLE LINE of code.
COURSE OUTLINE:
In this course, we’ll start by reviewing the Machine Learning landscape, exploring the differences between Supervised and Unsupervised Learning, and introducing several of the most common unsupervised techniques, including cluster analysis, association mining, outlier detection, and dimensionality reduction.
Throughout the course, we'll focus on breaking down each concept in plain and simple language to help you build an intuition for how these models actually work, from K-Means and Apriori to outlier detection, Principal Component Analysis, and more.
Section 1: Intro to Unsupervised Machine Learning
Unsupervised Learning Landscape
Common Unsupervised Techniques
Feature Engineering
The Unsupervised ML Workflow
Section 2: Clustering & Segmentation
Clustering Basics
K-Means Clustering
WSS & Elbow Plots
Hierarchical Clustering
Interpreting a Dendogram
Section 3: Association Mining
Association Mining Basics
The Apriori Algorithm
Basket Analysis
Minimum Support Thresholds
Infrequent & Multiple Item Sets
Markov Chains
Section 4: Outlier Detection
Outlier Detection Basics
Cross-Sectional Outliers
Nearest Neighbors
Time-Series Outliers
Residual Distribution
Section 5: Dimensionality Reduction
Dimensionality Reduction Basics
Principle Component Analysis (PCA)
Scree Plots
Advanced Techniques
Throughout the course, we'll introduce unique demos and real-world case studies to help solidify key concepts along the way.
You'll see how k-means can help identify customer segments, how apriori can be used for basket analysis and recommendation engines, and how outlier detection can spot anomalies in cross-sectional or time-series datasets.