Machine Learning and Deep Learning for Interviews & Research
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 4 Hours 39M | Lec: 38 | 1.70 GB
Genre: eLearning | Language: English
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 4 Hours 39M | Lec: 38 | 1.70 GB
Genre: eLearning | Language: English
Machine Learning, Linear Regression, PCA, Neural Networks, Hyperparameters, Deep Learning, Keras, Clustering, Case Study
Interested in Machine Learning, and Deep Learning and preparing for your interviews or research? Then, this course is for you!
The course is designed to provide the fundamentals of machine learning and deep learning. It is targeted toward newbies, scholars, students preparing for interviews, or anyone seeking to hone the data science skills necessary. In this course, we will cover the basics of machine learning, and deep learning and cover a few case studies.
This short course provides a broad introduction to machine learning, and deep learning. We will present a suite of tools for exploratory data analysis and machine learning modeling. We will get started with python and machine learning and provide case studies using keras and sklearn.
### MACHINE LEARNING ###
1.) Advanced Statistics and Machine Learning
Covariance
Eigen Value Decomposition
Principal Component Analysis
Central Limit Theorem
Gaussian Distribution
Types of Machine Learning
Parametric Models
Non-parametric Models
2.) Training Machine Learning Models
Supervised Machine Learning
Regression
Classification
Linear Regression
Gradient Descent
Normal Equations
Locally Weighted Linear Regression
Ridge Regression
Lasso Regression
Other classifier models in sklearn
Logistic Regression
Mapping non-linear functions using linear techniques
Overfitting and Regularization
Support Vector Machines
Decision Trees
3.) Artificial Neural Networks
Forward Propagation
Backward Propagation
Activation functions
Hyperparameters
Overfitting
Dropout
4.) Training Deep Neural Networks
Deep Neural Networks
Convolutional Neural Networks
Recurrent Neural Networks (GRU and LSTM)
5.) Unsupervised Learning
Clustering (k-Means)
6.) Implementation and Case Studies
Getting started with Python and Machine Learning
Case Study - Keras Digit Classifier
Case Study - Load Forecasting