Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Preparing Data for Modeling with scikit-learn

    Posted By: naag
    Preparing Data for Modeling with scikit-learn

    Preparing Data for Modeling with scikit-learn
    MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 3 Hours 40M | 440 MB
    Genre: eLearning | Language: English

    This course covers important steps in the pre-processing of data, including standardization, normalization, novelty and outlier detection, pre-processing image and text data, as well as explicit kernel approximations such as the RBF and Nystroem…


    Even as the number of machine learning frameworks and libraries increases on a daily basis, scikit-learn is retaining its popularity with ease. Scikit-learn makes the common use-cases in machine learning - clustering, classification, dimensionality reduction and regression - incredibly easy. In this course, Preparing Data for Modeling with scikit-learn, you will gain the ability to appropriately pre-process data, identify outliers and apply kernel approximations. First, you will learn how pre-processing techniques such as standardization and scaling help improve the efficacy of ML algorithms. Next, you will discover how novelty and outlier detection is implemented in scikit-learn. Then, you will understand the typical set of steps needed to work with both text and image data in scikit-learn. Finally, you will round out your knowledge by applying implicit and explicit kernel transformations to transform data into higher dimensions. When you’re finished with this course, you will have the skills and knowledge to identify the correct data pre-processing technique for your use-case and detect outliers using theoretically robust techniques.

    Preparing Data for Modeling with scikit-learn