Data Governance in a Self-Service World
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2 Hours | 1.58 GB
Genre: eLearning | Language: English
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2 Hours | 1.58 GB
Genre: eLearning | Language: English
Conventional data governance practices come from a simpler time when data management was free from many of today’s challenges, such as self-service reporting and analytics.
Traditional data governance focuses on enforcement of controls and gates, which will continue to be necessary. However, these methods must be complemented with support for the autonomy and agility of the self-service world. Enforcement works together with prevention. Guides and guardrails reduce the need for gating. The need to exercise controls is minimized when curating, coaching, crowdsourcing, and collaboration are integral parts of governance processes. In a self-service world, every data stakeholder plays a part in data governance.
You Will Learn
Where governance fits within modern data ecosystems, from point of ingestion to reporting and analysis
How various technologies support governance through the ecosystem, including data warehouses, data lakes, metadata repositories, and business intelligence
Process challenges for governing self-service; supplementing controls with collaboration and crowdsourcing
Engagement models for governing self-service
Organizational challenges for governing self-service; moving from data stewards to stewardship, curation, and coaching
Operational challenges for governing self-service; implementing a combination of gates, guardrails, and guides