Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Understanding and Applying Numerical Optimization Techniques

    Posted By: naag
    Understanding and Applying Numerical Optimization Techniques

    Understanding and Applying Numerical Optimization Techniques
    MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 4 Hours | 491 MB
    Genre: eLearning | Language: English

    Optimization is all about smart trade-offs given difficult choices. This course focuses on three specific aspects of numerical optimization: correctly setting up optimization problems, linear programming, and integer programming.

    Many optimization problems are conceptually similar to software design patterns - they are generally usable techniques that help with commonly recurring problems. In this course, Understanding and Applying Numerical Optimization Techniques, you'll first learn about framing the optimization problem correctly. Correctly framing the problem is the key to finding the right solution, and is also a powerful general tool in business, data analysis, and modeling. Next, you'll explore linear programming. Linear programming is a specific type of optimization used when the problem can be framed purely in terms of linear (straight line) relationships. Finally, you'll wrap up this course learning about integer programming. Integer programming is similar to linear programming, but it involves adding conditions that our variables be integers. This occurs very often in the real world, but the math of solving these problems is quite a bit more involved. By the end of this course, you will have a good understanding of how numerical optimization techniques can be used in data modeling, and how those models can be implemented in Excel, Python, and R.

    Understanding and Applying Numerical Optimization Techniques