Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Machine Learning : introduction aux Auto-encodeurs

    Posted By: Sigha
    Machine Learning : introduction aux Auto-encodeurs

    Machine Learning : introduction aux Auto-encodeurs
    Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 658 MB
    Genre: eLearning Video | Duration: 12 lectures (2 hour, 8 mins) | Language: Français

    Auto-encodeurs et Auto-encodeurs variationnels en partant de zéro


    What you'll learn

    Une explication intuitive des Auto-encodeurs
    L'implémentation d'Auto-encodeurs en utilisant Python (et PyTorch)
    Les applications et opportunités qu'offrent les Auto-encodeurs (variationnels)
    Ce que sont les Auto-encodeurs variationnels via l'article "Auto-Encoding Variational Bayes"
    L'exploration de l'espace latent
    Concepts de Machine Learning et de Deep Learning dont l'entraînement non supervisé et les modèles génératifs

    Course content
    3 sections • 12 lectures • 2h 8m total length

    Requirements

    Connaissances basiques en programmation
    Connaissances (très) basiques en optimisation (descente de gradient)

    Description

    Dans un monde où les données sont de plus en plus accessibles, les algorithmes se nourrissant de données non labellisées deviennent de plus en plus efficaces et rentables. Les entreprises qui comprennent cela auront bientôt un avantage compétitif sur celles qui tardent à prendre le train de l'intelligence artificielle. Les développeurs qui ont des compétences en Machine Learning et en Deep Learning sont donc de plus en plus demandés et possèdent de l'or entre les mains.


    Dans ce cours, nous allons voir comment tirer parti d'un jeu de données brut, ne possédant pas de labels. Particulièrement, nous allons nous focaliser exclusivement sur les Auto-encodeurs et les Auto-encodeurs variationnels et allons voir, comment ces modèles peuvent être entraînés de manière non supervisée, les rendant particulièrement attractif dans l'ère du Big Data.


    Ce cours, enseigné en utilisant le langage de programmation Python, requiert des connaissances de base en programmation. Si vous n'avez pas les bases requises, je vous recommande de vous mettre à jour en suivant un cours accéléré de programmation. De plus, il est préférable d'avoir des connaissances basiques en optimisation (nous utiliserons l'optimisation par gradient).


    Concepts abordés :

    Les Auto-encodeurs et leurs implémentations en Python

    Les Auto-encodeurs variationnels et leurs implémentations

    Le Machine Learning non supervisé

    Les modèles génératifs

    PyTorch par la pratique

    L'implémentation d'un article scientifique (Auto-Encoding Variational Bayes)


    N'attendez plus avant de vous lancer dans le monde du Machine Learning non supervisé!

    Who this course is for:

    À ceux qui s'intéressent aux Auto-encodeurs
    À ceux qui sont intéressés par l'intelligence artificielle
    À ceux qui veulent se préparer à la révolution de l'intelligence artificielle

    Machine Learning : introduction aux Auto-encodeurs


    For More Courses Visit & Bookmark Your Preferred Language Blog
    From Here: English - Français - Italiano - Deutsch - Español - Português - Polski - Türkçe - Русский