Introduction To Data Science
WEBRip | English | MP4 | 1280 x 720 | AVC ~936 kbps | 30 fps
AAC | 61.9 Kbps | 44.1 KHz | 2 channels | 05:52:02 | 2.39 GB
Genre: eLearning Video / Business, Data Analysis
WEBRip | English | MP4 | 1280 x 720 | AVC ~936 kbps | 30 fps
AAC | 61.9 Kbps | 44.1 KHz | 2 channels | 05:52:02 | 2.39 GB
Genre: eLearning Video / Business, Data Analysis
Use the R Programming Language to execute data science projects and become a data scientist. Implement business solutions, using machine learning and predictive analytics. The R language provides a way to tackle day-to-day data science tasks, and this course will teach you how to apply the R programming language and useful statistical techniques to everyday business situations. With this course, you'll be able to use the visualizations, statistical models, and data manipulation tools that modern data scientists rely upon daily to recognize trends and suggest courses of action.Understand Data Science to Be a More Effective Data Analyst
●Use R and RStudio
●Master Modeling and Machine Learning
●Load, Visualize, and Interpret Data
Use R to Analyze Data and Come Up with Valuable Business Solutions
This course is designed for those who are analytically minded and are familiar with basic statistics and programming or scripting. Some familiarity with R is strongly recommended; otherwise, you can learn R as you go.
You'll learn applied predictive modeling methods, as well as how to explore and visualize data, how to use and understand common machine learning algorithms in R, and how to relate machine learning methods to business problems.
All of these skills will combine to give you the ability to explore data, ask the right questions, execute predictive models, and communicate your informed recommendations and solutions to company leaders.
├── 01 Course Overview
│ ├── 001 Course Introduction.mp4
│ ├── 002 Walk-through of a data science project.mp4
│ ├── 003 Starting with R and data.mp4
│ ├── homedata_lesson1_clean.rds
│ ├── homedata_lesson1_dirty.rds
│ └── Sec1_Lesson1_Walkthru.Rmd
├── 02 Modeling and Machine Learning
│ ├── 001 Mapping Business to Machine Learning Tasks.mp4
│ ├── 002 Validating Models.mp4
│ ├── 003 Naive Bayes background.mp4
│ ├── 004 Naive Bayes practice.mp4
│ ├── 005 Linear Regression background.mp4
│ ├── 006 Linear Regression practice.mp4
│ ├── 007 Logistic Regression background.mp4
│ ├── 008 Logistic Regression practice.mp4
│ ├── 009 Decision Trees and Random Forest background.mp4
│ ├── 010 Random Forest practice.mp4
│ ├── 011 Generalized Additive Models.mp4
│ ├── 012 Support Vector Machines.mp4
│ ├── 013 Gradient Boosting.mp4
│ ├── 014 Regularization for Linear and Logistic Regression.mp4
│ ├── 015 Evaluating Models.mp4
│ ├── Examples.R
│ ├── salaryData.rds
│ ├── TestTrainExample.Rproj
│ └── TestTrainSplit.Rmd
├── 03 Data
│ ├── 001 Loading Data in R.mp4
│ ├── 002 Visualizing Data.mp4
│ ├── 003 Missing Values.mp4
│ ├── 004 The Shape of Data.mp4
│ ├── 005 Dealing with Categorical Variables.mp4
│ └── 006 Useful Data Transformations.mp4
└── 04 Moving On
├── 001 Recommended Books.mp4
├── 002 Further Topics.mp4
└── 003 Next Steps.mp4
│ ├── 001 Course Introduction.mp4
│ ├── 002 Walk-through of a data science project.mp4
│ ├── 003 Starting with R and data.mp4
│ ├── homedata_lesson1_clean.rds
│ ├── homedata_lesson1_dirty.rds
│ └── Sec1_Lesson1_Walkthru.Rmd
├── 02 Modeling and Machine Learning
│ ├── 001 Mapping Business to Machine Learning Tasks.mp4
│ ├── 002 Validating Models.mp4
│ ├── 003 Naive Bayes background.mp4
│ ├── 004 Naive Bayes practice.mp4
│ ├── 005 Linear Regression background.mp4
│ ├── 006 Linear Regression practice.mp4
│ ├── 007 Logistic Regression background.mp4
│ ├── 008 Logistic Regression practice.mp4
│ ├── 009 Decision Trees and Random Forest background.mp4
│ ├── 010 Random Forest practice.mp4
│ ├── 011 Generalized Additive Models.mp4
│ ├── 012 Support Vector Machines.mp4
│ ├── 013 Gradient Boosting.mp4
│ ├── 014 Regularization for Linear and Logistic Regression.mp4
│ ├── 015 Evaluating Models.mp4
│ ├── Examples.R
│ ├── salaryData.rds
│ ├── TestTrainExample.Rproj
│ └── TestTrainSplit.Rmd
├── 03 Data
│ ├── 001 Loading Data in R.mp4
│ ├── 002 Visualizing Data.mp4
│ ├── 003 Missing Values.mp4
│ ├── 004 The Shape of Data.mp4
│ ├── 005 Dealing with Categorical Variables.mp4
│ └── 006 Useful Data Transformations.mp4
└── 04 Moving On
├── 001 Recommended Books.mp4
├── 002 Further Topics.mp4
└── 003 Next Steps.mp4
also You can watch my other last: Programming-posts
General
Complete name : 002 Visualizing Data.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom
File size : 109 MiB
Duration : 15mn 17s
Overall bit rate mode : Variable
Overall bit rate : 1 000 Kbps
Encoded date : UTC 2015-02-20 20:47:45
Tagged date : UTC 2015-02-20 20:47:45
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Baseline@L3.1
Format settings, CABAC : No
Format settings, ReFrames : 3 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 15mn 17s
Bit rate : 936 Kbps
Maximum bit rate : 2 656 Kbps
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 fps
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.034
Stream size : 102 MiB (94%)
Writing library : Zencoder Video Encoding System
Encoded date : UTC 2015-02-20 20:45:56
Tagged date : UTC 2015-02-20 20:47:45
Color range : Limited
Color primaries : BT.709
Transfer characteristics : BT.709
Matrix coefficients : BT.709
Audio
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format profile : LC
Codec ID : 40
Duration : 15mn 17s
Bit rate mode : Variable
Bit rate : 61.9 Kbps
Maximum bit rate : 72.2 Kbps
Channel(s) : 2 channels
Channel positions : Front: L R
Sampling rate : 44.1 KHz
Compression mode : Lossy
Stream size : 6.77 MiB (6%)
Encoded date : UTC 2015-02-20 20:47:45
Tagged date : UTC 2015-02-20 20:47:45
Complete name : 002 Visualizing Data.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom
File size : 109 MiB
Duration : 15mn 17s
Overall bit rate mode : Variable
Overall bit rate : 1 000 Kbps
Encoded date : UTC 2015-02-20 20:47:45
Tagged date : UTC 2015-02-20 20:47:45
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Baseline@L3.1
Format settings, CABAC : No
Format settings, ReFrames : 3 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 15mn 17s
Bit rate : 936 Kbps
Maximum bit rate : 2 656 Kbps
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 fps
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.034
Stream size : 102 MiB (94%)
Writing library : Zencoder Video Encoding System
Encoded date : UTC 2015-02-20 20:45:56
Tagged date : UTC 2015-02-20 20:47:45
Color range : Limited
Color primaries : BT.709
Transfer characteristics : BT.709
Matrix coefficients : BT.709
Audio
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format profile : LC
Codec ID : 40
Duration : 15mn 17s
Bit rate mode : Variable
Bit rate : 61.9 Kbps
Maximum bit rate : 72.2 Kbps
Channel(s) : 2 channels
Channel positions : Front: L R
Sampling rate : 44.1 KHz
Compression mode : Lossy
Stream size : 6.77 MiB (6%)
Encoded date : UTC 2015-02-20 20:47:45
Tagged date : UTC 2015-02-20 20:47:45
Screenshots
Exclusive eLearning Videos ParRus-blog ← add to bookmarks