Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Practical Machine Learning with TensorFlow 2.0 and Scikit-Learn

    Posted By: IrGens
    Practical Machine Learning with TensorFlow 2.0 and Scikit-Learn

    Practical Machine Learning with TensorFlow 2.0 and Scikit-Learn
    .MP4, AVC, 1920x1080, 30 fps | English, AAC, 2 Ch | 10h 28m | 2.33 GB
    Instructor: Samuel Holt

    Get to grips with TensorFlow 2.0 and scikit-learn

    Learn

    Fundamentals of machine learning (and introducing the benefits of scikit-learn)
    Practical implementation with comprehensive examples of canonical machine learning, and supervised and unsupervised machine learning in scikit-learn
    How to identify a problem, select the right model, and optimize it to get the best desired outcome: insights into data
    TensorFlow 2.0 for deep learning with neural networks
    Deep learning and image-classification examples, and time series predictive model examples
    Reinforcement learning, and how to implement various types with examples
    Effectively use scikit-learn and TensorFlow in your production system, including framing a task in each task example

    About

    Have you been looking for a course that teaches you effective machine learning in scikit-learn and TensorFlow 2.0? Or have you always wanted an efficient and skilled working knowledge of how to solve problems that can't be explicitly programmed through the latest machine learning techniques?

    If you're familiar with pandas and NumPy, this course will give you up-to-date and detailed knowledge of all practical machine learning methods, which you can use to tackle most tasks that cannot easily be explicitly programmed; you'll also be able to use algorithms that learn and make predictions or decisions based on data.

    The theory will be underpinned with plenty of practical examples, and code example walk-throughs in Jupyter notebooks. The course aims to make you highly efficient at constructing algorithms and models that perform with the highest possible accuracy based on the success output or hypothesis you've defined for a given task.

    By the end of this course, you will be able to comfortably solve an array of industry-based machine learning problems by training, optimizing, and deploying models into production. Being able to do this effectively will allow you to create successful prediction and decisions for the task in hand (for example, creating an algorithm to read a labeled dataset of handwritten digits).

    The code bundle for this course is available at https://github.com/PacktPublishing/Practical-Machine-Learning-with-TensorFlow-2.0-and-Scikit-Learn

    Features

    Embark on your ML journey using the best machine learning practices and the powerful features of TensorFlow 2.0 and scikit-learn
    Learn to work with unstructured data, images, and noisy text input, and implement the latest Natural Language Processing models and methods
    Explore supervised and unsupervised algorithms and put them into practice using mini implementation projects as a basis for real-world applications


    Practical Machine Learning with TensorFlow 2.0 and Scikit-Learn