Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Guida ai Big Data con Spark 2. 0 e Python

    Posted By: Sigha
    Guida ai Big Data con Spark 2. 0 e Python

    Guida ai Big Data con Spark 2. 0 e Python
    Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 2.81 GB
    Genre: eLearning Video | Duration: 67 lectures (7 hour, 38 mins) | Language: Italiano

    Come utilizzare Python e Spark per l'analisi dei Big Data


    What you'll learn

    L'obiettivo finale è riuscire ad analizzare i Big Data tramite pyspark
    Capire la nascita e l'evoluzione dei Big Data, a partire da Hadoop
    Avere un panorama completo dei framework per i Big Data e della loro evoluzione
    Capire l'evoluzione del framework Spark e dei suoi moduli
    Impostare un ambiente di lavoro in locale e su Databricks
    Importare e analizzare i dati tramite pyspark
    Manipolazione dati e machine learning
    Cenni di database SQL e NoSQL
    Cenni di Spark Streaming

    Course content
    13 sections • 67 lectures • 7h 38m total length

    Requirements

    Conoscere le basi di Python e dell'analisi dati

    Description

    Se l’analisi di grossi quantitativi di dati sta diventando sempre di più una necessità, non solo nel campo del marketing, ma anche di settori come la medicina e la diagnostica, da alcuni anni ci si sta ponendo il problema di quali siano le metodologie migliori per trarre quanta più informazione utile possibile dai grandi dataset che possono essere reperiti in vari modi su internet (ad esempio nel caso di analisi di social media) o fanno parte del patrimonio di un’azienda.

    Viviamo infatti nell’era dei cosiddetti “Big Data”. Questo termine, coniato attorno al 2001, nasce per indicare enormi dataset che possono essere analizzati per estrarre informazione finora difficilmente accessibile e difficilmente processabile da un solo computer, per quanto potente, ma per analizzare i quali è necessario utilizzare più computer connessi in qualche modo tra loro in maniera coordinata.

    Di conseguenza, anche dal lato dell'organizzazione dei dati sono nati dei framework particolari per la gestione di queste grosse quantità di dati, il più recente dei quali è Spark.

    Spark, come vedremo, può essere utilizzato con molti linguaggi di programmazione, tra i quali Python è uno dei più importanti e utilizzati.

    Dopo una parte introduttiva sui Big Data e sui framework che sono stati nel corso degli ultimi anni per gestirli, ci occuperemo quindi di vari argomenti e implementazione di esempi di codice per ognuna di queste due librerie. In particolare vedremo come implementare i più comuni algoritmi di machine learning: regressione, Support Vector Machines, Alberi di decisione, metodi Ensemble e Kmeans, oltre alla manipolazione dati e al calcolo delle statistiche di base. Vedremo poi l'implementazione di un'analisi testi tramite pyspark, come impostare un sistema di raccomandazione, e alcuni cenni su regole di associazione e streaming.

    Who this course is for:

    Chi ha già conoscenze pregresse di analisi dati con Python e si trova ad analizzare dataset più grandi
    Chi ha qualche conoscenza delle basi del machine learning


    For More Courses Visit & Bookmark Your Preferred Language Blog
    From Here: English - Français - Italiano - Deutsch - Español - Português - Polski - Türkçe - Русский