Data Visualization in Python for Machine Learning Engineers
Last updated 7/2021
Duration: 1h8m | .MP4 1280x720, 30 fps(r) | AAC, 44100 Hz, 2ch | 93 MB
Genre: eLearning | Language: English
Last updated 7/2021
Duration: 1h8m | .MP4 1280x720, 30 fps(r) | AAC, 44100 Hz, 2ch | 93 MB
Genre: eLearning | Language: English
The Third Course in a Series for Mastering Python for Machine Learning Engineers
What you'll learn
You'll learn Matplotlib and Seaborn and have a solid understanding of how they are used in applied machine learning.
You'll work through hands on labs that will test the skills you learned in the lessons.
You'll learn all the Python vernacular specific to data visualization you need to take you skills to the next level.
You'll be on your way to becoming a real world machine learning engineer or data engineer.
Requirements
You've completed the first two courses in the series.
A desire to learn Python.
A basic understanding of machine learning would be beneficial.
Description
Welcome to
Data Visualization in Python for Machine learning engineers.
This is the
third course
in a series
designed to prepare you for
becoming a machine learning engineer
.
I'll keep this updated and list
only
the courses
that are live.
Here is a list of the courses that can be
taken right now.
Please take them in order
.
The
knowledge
builds from
course to course.
The Complete Python Course for Machine Learning Engineers
Data Wrangling in Pandas for Machine Learning Engineers
Data Visualization in Python for Machine Learning Engineers (This one)
The second course in the series is about
Data Wrangling.
Please
take the
courses in order.
The
knowledge builds
from course to course in a
serial nature.
Without
the first course many students might struggle with this one.
Thank you!!
In this course we are going to focus on
data visualization
and in
Python
that means we are going to be learning
matplotlib
and
seaborn
.
Matplotlib
is a Python package for 2D plotting that generates
production-quality graphs.
Matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc., with just a few lines of code.
Seaborn
is a Python visualization library based on matplotlib. Most developers will use seaborn if the same functionally exists in both matplotlib and seaborn.
This course focuses on
visualizing.
Here are
a few things
you'll
learn
in the
course
.
A complete understanding of data visualization vernacular.
Matplotlib from A-Z.
The ability to craft usable charts and graphs for all your machine learning needs.
Lab integrated. Please don't just watch. Learning is an interactive event. Go over every lab in detail.
Real world Interviews Questions
.
**Five Reasons to Take this Course**
1) You Want to be a Machine Learning Engineer
It's one of the most sought after careers in the world. The growth potential career wise is second to none. You want the freedom to move anywhere you'd like. You want to be compensated for your efforts. You want to be able to work remotely. The list of benefits goes on. Without a solid understanding of data wrangling in Python you'll have a hard time of securing a position as a machine learning engineer.
2) Data Visualization is a Core Component of Machine Learning
Data visualization is the presentation of data in a pictorial or graphical format. It enables decision makers to see analytics presented visually, so they can grasp difficult concepts or identify new patterns. Because of the way the human brain processes information, using charts or graphs to visualize large amounts of complex data is easier than poring over spreadsheets or reports. Data visualization is a quick, easy way to convey concepts in a universal manner – and you can experiment with different scenarios by making slight adjustments.
3) The Growth of Data is Insane
Ninety percent of all the world's data has been created in the last two years. Business around the world generate approximately 450 billion transactions a day. The amount of data collected by all organizations is approximately 2.5 exabytes a day. That number doubles every month. Almost all real world machine learning is supervised. That means you point your machine learning models at clean tabular data.
4) Machine Learning in Plain English
Machine learning is one of the hottest careers on the planet and understanding the basics is required to attaining a job as a data engineer. Google expects data engineers and their machine learning engineers to be able to build machine learning models.
5) You want to be ahead of the Curve
The data engineer and machine learning engineer roles are fairly new. While you’re learning, building your skills and becoming certified you are also the first to be part of this burgeoning field. You know that the first to be certified means the first to be hired and first to receive the top compensation package.
Thanks for interest in
Data Visualization in Python for Machine learning engineers.
See you in the course!!
Who this course is for
If you want to become a machine learning engineer then this course is for you.
If you need to learn Python for machine learning then this course is for you.
If you want to learn how to use matplotlib for real world applications then this course is for you.
More Info