Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)

    Posted By: ParRus
    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)
    WEBRip | English | MP4 | 1280 x 720 | AVC ~54.2 kbps | 29.970 fps
    AAC | 126 Kbps | 44.1 KHz | 2 channels | 43:07:35 | 7.8 GB
    Genre: Video Tutorial

    Data science skills are in high demand, and you'll finish this program with practical skills needed to land a data science job. You'll build projects designed with our industry partners using real-world data, and by the end of the program you will be able to build machine learning models includng supervised and unsupervised methods; create and run data pipelines; design experiments; build recommendation systems; deploy solutions to the cloud; and more.
    This program is an ideal way to move into a data science career, and by the end of the program you'll be ready to apply for data science jobs.

    Term One is “Machine Learning for Data Scientists.” Across three sections, students focus on Supervised Learning, Deep Learning, and Unsupervised Learning. Featured projects include using Kaggle to build an algorithm for identifying charity donors, and creating an image classifier. Term Two is “Applied Data Science,” and the focus is on solving problems with data science, as well as software and data engineering. As a capstone project, students build their own data science portfolio project.

    The Data Scientist Nanodegree program is for students who possess strong programming and data analysis skills, and is positioned as the next step for graduates of the Data Analyst Nanodegree program. Those interested in advanced analytics without programming are encouraged to consider the Business Analyst Nanodegree program, and beginners are invited to explore our Data Foundations Nanodegree program.

    Content:

    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors
    Part 01-Module 02-Lesson 02_Get Help with Your Account
    Part 01-Module 03-Lesson 01_Setting Up Your Computer
    Part 01-Module 04-Lesson 01_What Is Ahead
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View
    Part 02-Module 01-Lesson 02_Linear Regression
    Part 02-Module 01-Lesson 03_Perceptron Algorithm
    Part 02-Module 01-Lesson 04_Decision Trees
    Part 02-Module 01-Lesson 05_Naive Bayes
    Part 02-Module 01-Lesson 06_Support Vector Machines
    Part 02-Module 01-Lesson 07_Ensemble Methods
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics
    Part 02-Module 01-Lesson 09_Training and Tuning
    Part 02-Module 01-Lesson 10_Finding Donors Project
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent
    Part 03-Module 01-Lesson 03_Training Neural Networks
    Part 03-Module 01-Lesson 04_Keras
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch
    Part 03-Module 01-Lesson 06_Image Classifier Project
    Part 04-Module 01-Lesson 01_Clustering
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation
    Part 04-Module 01-Lesson 04_PCA
    Part 04-Module 01-Lesson 05_Random Projection and ICA
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments
    Part 05-Module 01-Lesson 01_Congratulations!
    Part 06-Module 01-Lesson 01_Why Python Programming
    Part 06-Module 01-Lesson 02_Data Types and Operators
    Part 06-Module 01-Lesson 03_Control Flow
    Part 06-Module 01-Lesson 04_Functions
    Part 06-Module 01-Lesson 05_Scripting
    Part 06-Module 01-Lesson 06_NumPy
    Part 06-Module 01-Lesson 07_Pandas
    Part 07-Module 01-Lesson 01_Basic SQL
    Part 07-Module 01-Lesson 02_SQL Joins
    Part 07-Module 01-Lesson 03_SQL Aggregations
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables
    Part 07-Module 01-Lesson 05_SQL Data Cleaning
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis
    Part 08-Module 01-Lesson 02_Design of Visualizations
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data
    Part 08-Module 01-Lesson 06_Explanatory Visualizations
    Part 08-Module 01-Lesson 07_Visualization Case Study
    Part 09-Module 01-Lesson 01_Shell Workshop
    Part 10-Module 01-Lesson 01_What is Version Control
    Part 10-Module 01-Lesson 02_Create A Git Repo
    Part 10-Module 01-Lesson 03_Review a Repo's History
    Part 10-Module 01-Lesson 04_Add Commits To A Repo
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging
    Part 10-Module 01-Lesson 06_Undoing Changes
    Part 10-Module 01-Lesson 07_Working With Remotes
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository
    Part 11-Module 01-Lesson 01_Introduction
    Part 11-Module 01-Lesson 02_Vectors
    Part 11-Module 01-Lesson 03_Linear Combination
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II
    Part 12-Module 01-Lesson 03_Admissions Case Study
    Part 12-Module 01-Lesson 04_Probability
    Part 12-Module 01-Lesson 05_Binomial Distribution
    Part 12-Module 01-Lesson 06_Conditional Probability
    Part 12-Module 01-Lesson 07_Bayes Rule
    Part 12-Module 01-Lesson 08_Python Probability Practice
    Part 12-Module 01-Lesson 09_Normal Distribution Theory
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem
    Part 12-Module 01-Lesson 11_Confidence Intervals
    Part 12-Module 01-Lesson 12_Hypothesis Testing
    Part 12-Module 01-Lesson 13_Case Study AB tests
    Part 12-Module 01-Lesson 14_Regression
    Part 12-Module 01-Lesson 15_Multiple Linear Regression
    Part 12-Module 01-Lesson 16_Logistic Regression
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors
    Part 13-Module 01-Lesson 03_Get Help with Your Account
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart
    Part 14-Module 01-Lesson 01_The Data Science Process
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming
    Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi
    Part 15-Module 01-Lesson 06_Web Development
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering
    Part 16-Module 01-Lesson 02_ETL Pipelines
    Part 16-Module 01-Lesson 03_NLP Pipelines
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing
    Part 17-Module 02-Lesson 03_AB Testing Case Study
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations
    Part 17-Module 04-Lesson 01_Recommendation Engines
    Part 18-Module 01-Lesson 01_Data Scientist Capstone
    Part 19-Module 01-Lesson 01_Congratulations!
    Part 20-Module 01-Lesson 01_Neural Networks
    Part 20-Module 01-Lesson 02_Deep Neural Networks
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks

    also You can watch my other last: Programming-posts

    Screenshots

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)

    Exclusive eLearning Videos ParRus-blogadd to bookmarks

    Udacity - Data Scientist Nanodegree nd025 v1.0.0 (2018)