Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Data Mining for Business in Python 2021

    Posted By: lucky_aut
    Data Mining for Business in Python 2021

    Data Mining for Business in Python 2021
    Duration: 8h 51m | .MP4 1280x720, 30 fps(r) | AAC, 44100 Hz, 2ch | 3.06 GB
    Genre: eLearning | Language: English

    9 Data Mining algorithms for Data Science, Machine Learning and Explainable Artificial Intelligence. 18 Case Studies.

    What you'll learn
    Survival Analysis
    Cox Proportional Hazard Regression
    CHAID
    Cluster Analysis - Gaussian Mixture Model
    Association Rule Learning
    Random Forest
    LIME
    SHAP
    Data Mining
    Principal Component Analyisis
    XGBoost
    Manifold Learning

    Requirements
    Statistics - Linear and Logistic Regression
    Basic Python
    Description
    Are you looking to learn how to do Data Mining like a pro? You have come to the right place.

    Welcome to the most exciting Data Mining course in Python. I will show you the most impactful algorithms that I have witnessed in my professional career to derive meaningful insights.

    In the age of endless spreadsheets, it is easy to feel overwhelmed with so much data. This is where Data Mining techniques come in. To swiftly analyze, find patterns, and deliver an outcome to you. For me, the Data Mining value added is that you stop the number crunching and pivot table creation, leaving time to come with actionable plans based on the insights.

    Now, why should you enroll in the course? Let me give you four reasons.

    The first is that you will learn the models' intuition without focusing too much on the math. It is crucial that you know why a model makes sense and the underlying assumptions behind it. I will explain to you each model using words, graphs, and metaphors, leaving math and the Greek alphabet to the bare minimum.

    The second reason is the thorough course structure of the most impactful Data Mining techniques. Based on my experience, the course curriculum has the algorithms I believe to be most impactful, up-to-date, and sought after. Here is the list of the algorithms we will learn:

    Supervised Learning

    Survival Analysis

    Cox Proportional Hazard Regression

    CHAID

    Unsupervised Learning

    Cluster Analysis - Gaussian Mixture Model

    Dimension Reduction – PCA and Manifold Learning

    Association Rule Learning

    · Explainable Artificial Intelligence

    Random Forest and Feature Importance

    LIME

    XGBoost and SHAP

    The third reason is that we code together, line by line. Programming is challenging, especially for beginners. I will guide you through every code snippet. I will also explain all parameters and functions that you need to use, step by step. In the end, you will have code templates ready to use in your problems.

    The final reason is that you practice, practice, practice. At the end of each section, there is a challenge. The goal is that you apply immediately what you have learned. I give you a dataset and a list of actions you need to take to solve it. I think it is the best way to really cement all the techniques in you. Hence, there will be 2 case studies per technique.

    I hope to have spiked your interest, and I am looking forward to seeing you inside!

    Who this course is for:
    People looking to learn Data Mining algorithms

    More Info