Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Data Analysis and Statistical Modeling in R

    Posted By: lucky_aut
    Data Analysis and Statistical Modeling in R

    Data Analysis and Statistical Modeling in R
    Duration: 2h 59m | .MP4 1280x720, 30 fps(r) | AAC, 44100 Hz, 2ch | 1.31 GB
    Genre: eLearning | Language: English

    Learn the foundation of Data Science, Analytics and Data interpretation using statistical tests with real world examples

    What you'll learn
    Statistical modelling in R with real world examples and datasets
    Develop and execute Hypothesis 1-tailed and 2-tailed tests in R
    Test differences, durability and data limitations
    Custom Data visualisations using R with limitations and interpretation
    Applications of Statistical tests
    Understand statistical Data Distributions and their functions in R
    How to interpret different output values and make conclusions
    To pick suitable statistical technique according to problem
    To pick suitable visualisation technique according to problem
    R packages which can improve statistical modelling

    Requirements
    Course will teach how to install R and R-studio on Windows OS
    Students should know and familiar with MAC/Linux distribution software installation, if they are using one.
    Should know basic R fundamentals such as vectors, data frames etc.
    Description
    Before applying any data science model its always a good practice to understand the true nature of your data. In this Course we will cover fundamentals and applications of statistical modelling. We will use R Programming Language to run this analysis. We will start with Math, Data Distribution and statistical concepts then by using plots and charts we will interpret our data. We will use statistical modelling to prove our claims and use hypothesis testing to confidently make inferences.

    This course is divided into 3 Parts

    In the 1st section we will cover following concepts

    1. Normal Distribution

    2. Binomial Distribution

    3. Chi-Square Distribution

    4. Densities

    5. Cumulative Distribution function CDF

    6. Quantiles

    7. Random Numbers

    8. Central Limit Theorem CLT

    9. R Statistical Distribution

    10. Distribution Functions

    11. Mean

    12. Median

    13. Range

    14. Standard deviation

    15. Variance

    16. Sum of squares

    17. Skewness

    18. Kurtosis



    2nd Section



    1. Bar Plots

    2. Histogram

    3. Pie charts

    4. Box plots

    5. Scatter plots

    6. Dot Charts

    7. Mat Plots

    8. Plots for groups

    9. Plotting datasets



    3rd Section of this course will elaborate following concepts

    1. Parametric tests

    2. Non-Parametric Tests

    3. What is statistically significant means?

    4. P-Value

    5. Hypothesis Testing

    6. Two-Tailed Test

    7. One Tailed Test

    8. True Population mean

    9. Hypothesis Testing

    10. Proportional Test

    11. T-test

    12. Default t-test / One sample t-test

    13. Two-sample t-test / Independent Samples t-test

    14. Paired sample t-test

    15. F-Tests

    16. Mean Square Error MSE

    17. F-Distribution

    18. Variance

    19. Sum of squares

    20. ANOVA Table

    21. Post-hoc test

    22. Tukey HSD

    23. Chi-Square Tests

    24. One sample chi-square goodness of fit test

    25. chi-square test for independence

    26. Correlation

    27. Pearson Correlation

    28. Spearman Correlation

    In all the analysis we will practically see the real world applications using data sets csv files and r built in Datasets and packages.

    Who this course is for:
    University and college data science students
    Data Science aspirants
    Beginners who want to perform statistical modelling and learn about its applications
    people who want to shift from SPSS and EXCEL to R to perform statistical analysis

    More Info