Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Coursera - Data Analysis [repost]

    Posted By: ParRus
    Coursera - Data Analysis [repost]

    Coursera - Data Analysis
    WEBRip | English | MP4 + PDF Slides | 960 x 540 | AVC ~33.8 kbps | 30 fps
    AAC | 128 Kbps | 44.1 KHz | 2 channels | Subs: English (.srt) | 12h 36mn | 949 MB
    Genre: eLearning Video / Programming

    This course is an applied statistics course focusing on data analysis. The course will begin with an overview of how to organize, perform, and write-up data analyses. Then we will cover some of the most popular and widely used statistical methods like linear regression, principal components analysis, cross-validation, and p-values. Instead of focusing on mathematical details, the lectures will be designed to help you apply these techniques to real data using the R statistical programming language, interpret the results, and diagnose potential problems in your analysis. You will also have the opportunity to critique and assist your fellow classmates with their data analyses.
    Course Content:
    The structure of a data analysis (steps in the process, knowing when to quit, etc.)
    Types of data (census, designed studies, randomized trials)
    Types of data analysis questions (exploratory, inferential, predictive, etc.)
    How to write up a data analysis (compositional style, reproducibility, etc.)
    Obtaining data from the web (through downloads mostly)
    Loading data into R from different file types
    Plotting data for exploratory purposes (boxplots, scatterplots, etc.)
    Exploratory statistical models (clustering)
    Statistical models for inference (linear models, basic confidence intervals/hypothesis testing)
    Basic model checking (primarily visually)
    The prediction process
    Study design for prediction
    Cross-validation
    A couple of simple prediction models
    Basics of simulation for evaluating models
    Ways you can fool yourself and how to avoid them (confounding, multiple testing, etc.)

    also You can watch my other last: Programming-posts

    General
    Complete name : 006_3 - 4 - Representing Data (1842).mp4
    Format : MPEG-4
    Format profile : Base Media
    Codec ID : isom (isom/iso2/avc1/mp41)
    File size : 22.8 MiB
    Duration : 18mn 42s
    Overall bit rate : 170 Kbps
    Encoded date : UTC 1970-01-01 00:00:00
    Tagged date : UTC 1970-01-01 00:00:00
    Writing application : Lavf53.29.100

    Video
    ID : 1
    Format : AVC
    Format/Info : Advanced Video Codec
    Format profile : High@L3.1
    Format settings, CABAC : Yes
    Format settings, ReFrames : 4 frames
    Codec ID : avc1
    Codec ID/Info : Advanced Video Coding
    Duration : 18mn 42s
    Bit rate : 33.8 Kbps
    Width : 960 pixels
    Height : 540 pixels
    Display aspect ratio : 16:9
    Frame rate mode : Constant
    Frame rate : 30.000 fps
    Color space : YUV
    Chroma subsampling : 4:2:0
    Bit depth : 8 bits
    Scan type : Progressive
    Bits/(Pixel*Frame) : 0.002
    Stream size : 4.53 MiB (20%)
    Writing library : x264 core 120 r2120 0c7dab9
    Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
    Encoded date : UTC 1970-01-01 00:00:00
    Tagged date : UTC 1970-01-01 00:00:00

    Audio
    ID : 2
    Format : AAC
    Format/Info : Advanced Audio Codec
    Format profile : LC
    Codec ID : 40
    Duration : 18mn 42s
    Bit rate mode : Constant
    Bit rate : 128 Kbps
    Channel(s) : 2 channels
    Channel positions : Front: L R
    Sampling rate : 44.1 KHz
    Frame rate : 43.066 fps (1024 spf)
    Compression mode : Lossy
    Stream size : 17.1 MiB (75%)
    Default : Yes
    Alternate group : 1
    Encoded date : UTC 1970-01-01 00:00:00
    Tagged date : UTC 1970-01-01 00:00:00

    Screenshots

    Coursera - Data Analysis [repost]

    Coursera - Data Analysis [repost]

    Coursera - Data Analysis [repost]

    Coursera - Data Analysis [repost]

    For more Exclusive material, Visit my AH-blog

    Coursera - Data Analysis [repost]