Apache Mahout Clustering Designs
by Ashish Gupta
English | 2015 | ISBN: 1783284439 | 127 Pages | True PDF | 3.73 MB
by Ashish Gupta
English | 2015 | ISBN: 1783284439 | 127 Pages | True PDF | 3.73 MB
Explore clustering algorithms used with Apache Mahout.
This book is for developers who want to try out clustering on large datasets using Mahout. It will also be useful for those users who don't have background in Mahout, but have knowledge of basic programming and are familiar with basics of machine learning and clustering. It will be helpful if you know about clustering techniques with some other tool.
As more and more organizations are discovering the use of big data analytics, interest in platforms that provide storage, computation, and analytic capabilities has increased. Apache Mahout caters to this need and paves the way for the implementation of complex algorithms in the field of machine learning to better analyse your data and get useful insights into it.
Starting with the introduction of clustering algorithms, this book provides an insight into Apache Mahout and different algorithms it uses for clustering data. It provides a general introduction of the algorithms, such as K-Means, Fuzzy K-Means, StreamingKMeans, and how to use Mahout to cluster your data using a particular algorithm. You will study the different types of clustering and learn how to use Apache Mahout with real world data sets to implement and evaluate your clusters.
This book will discuss about cluster improvement and visualization using Mahout APIs and also explore model-based clustering and topic modelling using Dirichlet process. Finally, you will learn how to build and deploy a model for production use.