Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    R Programming: Advanced Analytics In R For Data Science

    Posted By: Sigha
    R Programming: Advanced Analytics In R For Data Science

    R Programming: Advanced Analytics In R For Data Science
    Last updated 1/2023
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 3.49 GB | Duration: 5h 58m

    Take Your R & R Studio Skills To The Next Level. Data Analytics, Data Science, Statistical Analysis in Business, GGPlot2

    What you'll learn
    Perform Data Preparation in R
    Identify missing records in dataframes
    Locate missing data in your dataframes
    Apply the Median Imputation method to replace missing records
    Apply the Factual Analysis method to replace missing records
    Understand how to use the which() function
    Know how to reset the dataframe index
    Work with the gsub() and sub() functions for replacing strings
    Explain why NA is a third type of logical constant
    Deal with date-times in R
    Convert date-times into POSIXct time format
    Create, use, append, modify, rename, access and subset Lists in R
    Understand when to use [] and when to use [[]] or the $ sign when working with Lists
    Create a timeseries plot in R
    Understand how the Apply family of functions works
    Recreate an apply statement with a for() loop
    Use apply() when working with matrices
    Use lapply() and sapply() when working with lists and vectors
    Add your own functions into apply statements
    Nest apply(), lapply() and sapply() functions within each other
    Use the which.max() and which.min() functions

    Requirements
    Basic knowledge of R
    Knowledge of the GGPlot2 package is recommended
    Knowledge of dataframes
    Knowledge of vectors and vectorized operations

    Description
    Ready to take your R Programming skills to the next level?Want to truly become proficient at Data Science and Analytics with R?This course is for you!Professional R Video training, unique datasets designed with years of industry experience in mind, engaging exercises that are both fun and also give you a taste for Analytics of the REAL WORLD.In this course, you will learn:How to prepare data for analysis in RHow to perform the median imputation method in RHow to work with date-times in RWhat Lists are and how to use themWhat the Apply family of functions isHow to use apply(), lapply() and sapply() instead of loopsHow to nest your own functions within apply-type functionsHow to nest apply(), lapply() and sapply() functions within each otherAnd much, much more!The more you learn, the better you will get. After every module, you will have a robust set of skills to take with you into your Data Science career.We prepared real-life case studies.In the first section, you will be working with financial data, cleaning it up, and preparing for analysis. You were asked to create charts showing revenue, expenses, and profit for various industries.In the second section, you will be helping Coal Terminal understand what machines are underutilized by preparing various data analysis tasks.In the third section, you are heading to the meteorology bureau. They want to understand better weather patterns and requested your assistance on that.

    Who this course is for:
    Anybody who has basic R knowledge and would like to take their skills to the next level,Anybody who has already completed the R Programming A-Z course,This course is NOT for complete beginners in R


    R Programming: Advanced Analytics In R For Data Science


    For More Courses Visit & Bookmark Your Preferred Language Blog
    From Here: English - Français - Italiano - Deutsch - Español - Português - Polski - Türkçe - Русский