Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Python 3 And Data Science Mastery - Practical Python 3

    Posted By: ELK1nG
    Python 3 And Data Science Mastery - Practical Python 3

    Python 3 And Data Science Mastery - Practical Python 3
    Last updated 5/2022
    MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
    Language: English | Size: 8.69 GB | Duration: 26h 45m

    Develop Python 3 and Data Science Apps - Python 3 and Data Science Class - Real World Python 3 and Data Science Projects

    What you'll learn
    Develop python based applications
    Develop marketing applications with Python
    Mine twitter data with Python to get grasp of people's opinion on trending matters
    Develop Natural Language Processing (NLP) applications with Python to process everyday language
    Create Machine Learning applications with Python to make your computer smart and automate the boring tasks
    Create Deep Learning applications with Python to add Artificial Intelligence to your machine learning models and create even smarter models
    Use IBM Watson to unlock the vast world of unstructured data and create your own language translator applications with Python
    Create Big Data applications with the help of the Relational Databases and Python clear and concise syntax
    Use Data Science to predict business predictions and business intelligence
    Automate everyday tasks and save time
    Requirements
    No programming experience needed. You will learn everything you need to know
    A computer with Windows, Mac, Linux, ChromeOS operating system installed
    Description
    The main goal of this course is to teach you how to code using Python 3 & Data Science.    My name is Morteza Kordi, Senior Python Programmer & Data Science Specialist and Udemy instructor with over 70,000 satisfied students, and I’ve designed The Ultimate Hands-On Python 3 and Data Science Bootcamp with one thing in mind: you should learn by practicing your skills and building apps. I’ll personally be answering any questions you might have and I’ll be happy to provide links, resources, and any help I can offer to help you master Python 3 & data Science as well as Machine Learning. In this course, I will demonstrate the power of Python & Data Science, and how I dramatically increased my career prospects as a Programmer. New to Programming or Python? I'll personally teach you the fundamentals of programming & Python. you will master the basics before diving into the advanced stuff. So no programming experience is required.Want to learn about Natural Language Processing (NLP)? This Course contains a comprehensive course about NLP too. Want to learn about IBM Watson and Cognitive Computing? If you want to process unstructured data, deal with human limitations, improve performance and abilities or handle enormous quantities of data then you should learn IBM Watson and Cognitive Computing. This Course has the answer for you.Want to learn Machine Learning? If you want to simplify your product marketing, get accurate sales forecasts, facilitate accurate medical predictions and diagnoses, simplify time-intensive documentation in data entry, improve the precision of financial rules and models, and easy spam detection then you should learn Machine Learning. Again This Course has the answer for you.Want to learn Deep Learning? Do you struggle with processing large numbers of features? If yes, then you should learn Deep Learning. Again This Course covers this topic too!So… Why This Course?!Learn to code like the pros - not just copy and pasteLearn the Latest Python 3 APIs and services - we don't teach old junkLearn to build apps - a lot of themNo Programming Experience is neededBuild Real-world AppsLifetime SupportDon't wait and join us now by clicking the BUY NOW button!

    Overview

    Section 1: Introduction

    Lecture 1 Introduction

    Section 2: Download & Install the Required Softwares

    Lecture 2 Install Anaconda

    Lecture 3 Update Anaconda

    Lecture 4 Our package managers

    Lecture 5 Install jupyter-matplotlib

    Lecture 6 Download and Install Visual Studio Code

    Section 3: Learn to Use IPyton & Jupyter Notebooks

    Lecture 7 IPython

    Lecture 8 Jupyter Notebook

    Section 4: Python Programming Basics

    Lecture 9 Variables

    Lecture 10 Source code

    Lecture 11 Arithmetic

    Lecture 12 Source code

    Lecture 13 Strings - Single Quoted & Double Quoted Strings

    Lecture 14 Source code

    Lecture 15 Triple-quoted Strings

    Lecture 16 Source code

    Lecture 17 Get input from user

    Lecture 18 Source code

    Lecture 19 Decision making

    Lecture 20 Objects

    Lecture 21 Source code

    Section 5: Control Statements in Python

    Lecture 22 if, elif and else

    Lecture 23 Source code

    Lecture 24 while loop

    Lecture 25 Source code

    Lecture 26 for loop

    Lecture 27 Source code

    Lecture 28 Augmented assignments

    Lecture 29 Source code

    Lecture 30 Sequence iteration

    Lecture 31 Source code

    Lecture 32 Sentinel iteration

    Lecture 33 Source code

    Lecture 34 Range function

    Lecture 35 Source code

    Lecture 36 Decimal type

    Lecture 37 Source code

    Lecture 38 Logical operators

    Lecture 39 Source code

    Section 6: Functions in Python

    Lecture 40 Defining functions

    Lecture 41 Source code

    Lecture 42 Functions with multiple parameters

    Lecture 43 Source code

    Lecture 44 Random number generation

    Lecture 45 Source code

    Lecture 46 math Module

    Lecture 47 Source code

    Lecture 48 Default Argument Value

    Lecture 49 Source code

    Lecture 50 Keyword Arguments

    Lecture 51 Source code

    Lecture 52 Arbitrary Parameter List

    Lecture 53 Source code

    Lecture 54 Methods

    Lecture 55 Source code

    Lecture 56 Scoping

    Lecture 57 Source code

    Lecture 58 Import statement

    Lecture 59 Source code

    Lecture 60 Function arguments

    Lecture 61 Source code

    Lecture 62 Reproducibility

    Lecture 63 Source code

    Section 7: Sequences in Python Programming - Master Lists & Tuples

    Lecture 64 Intro - What we are going to learn in this section of the course

    Lecture 65 Install Code-Runner Extension in Visual Studio Code

    Lecture 66 A List of Integer Values & Accessing List Elements With Positive Indices

    Lecture 67 Source Code

    Lecture 68 Negatives Indices & Math Operations to access elements & Mutable Lists

    Lecture 69 Source Code

    Lecture 70 Populating list with a range & Concatenation Operator & Boolean Operations

    Lecture 71 Source Code

    Lecture 72 Tuples

    Lecture 73 Tuples Source Code

    Lecture 74 Why you should learn about sequence unpacking in Python

    Lecture 75 Unpacking Tuples, Strings & Lists

    Lecture 76 Unpacking Tuples, Strings & Lists - Source Code

    Lecture 77 Unpacking Range of Integer Values

    Lecture 78 Unpacking Range of Integer Values - Source Code

    Lecture 79 Use "Unpacking" to add swapping feature to your app

    Lecture 80 Use "Unpacking" to add swapping feature to your app - Source Code

    Lecture 81 Unpacking Enumerated Sequences With their Indices & Corresponding Values

    Lecture 82 Unpacking Enumerated Sequences - Source Code

    Lecture 83 Create a primitive bar chart with # ;)

    Lecture 84 Source Code

    Lecture 85 Slice an ordered subset of sequence values

    Lecture 86 Source Code

    Lecture 87 Slice an intermittent subset of sequence values

    Lecture 88 Source Code

    Lecture 89 Use negative indices to slice a reversed subset of sequence values

    Lecture 90 Source Code

    Lecture 91 Count backwards the sequence - "The HARD way"

    Lecture 92 Source Code

    Lecture 93 Update a subset of sequence values

    Lecture 94 Source Code

    Lecture 95 Delete a subset of sequence values

    Lecture 96 Source Code

    Lecture 97 Modify an intermittent subset of sequence values

    Lecture 98 Source Code

    Lecture 99 Determine the identity of your sequence object after slicing

    Lecture 100 Source Code

    Lecture 101 Del Statement

    Lecture 102 Source Code

    Lecture 103 Pass a list object to a function - Passing by reference explained!

    Lecture 104 Source Code

    Lecture 105 The Sort Method

    Lecture 106 Source Code

    Lecture 107 The Sorted Function

    Lecture 108 Source Code

    Lecture 109 Sequence Searching

    Lecture 110 Source Code

    Lecture 111 Usages of "in" and "not in" keywords when it comes to sequence searching

    Lecture 112 Source Code

    Lecture 113 Inserting & Appending

    Lecture 114 Source Code

    Lecture 115 Extend your list

    Lecture 116 Source Code

    Lecture 117 Remove & Clear List Elements

    Lecture 118 Source Code

    Lecture 119 Count up the list items and determine the occurrence

    Lecture 120 Source Code

    Lecture 121 Reverse your list elements

    Lecture 122 Source Code

    Lecture 123 How to create a shallow list copy of your list elements

    Lecture 124 Source Code

    Lecture 125 How to create a shallow list copy of your list elements

    Lecture 126 Source Code

    Lecture 127 Stack Data Structure and the pop() function

    Lecture 128 Source Code

    Lecture 129 Simple List Comprehension Creation

    Lecture 130 Source Code

    Lecture 131 Complex List Comprehension Creation

    Lecture 132 Source Code

    Lecture 133 Add decision making to your list comprehension

    Lecture 134 Source Code

    Lecture 135 Apply List Comprehension other sorts of sequences

    Lecture 136 Source Code

    Lecture 137 Generator Expression Vs List Comprehension - Which one is better?

    Lecture 138 Source Code

    Lecture 139 Generator Expressions

    Lecture 140 Source Code

    Lecture 141 Functional Programming With Filter()

    Lecture 142 Source Code

    Lecture 143 Use Lambda Expression to Simplify the Process of Filtering

    Lecture 144 Source Code

    Lecture 145 Functional Programming With Map()

    Lecture 146 Source Code

    Lecture 147 Functional Programming With Reduce()

    Lecture 148 Source Code

    Lecture 149 The ord fucntion - Get the numeric value of your sequence!

    Lecture 150 Source Code

    Lecture 151 Sequence processing with min() and max()

    Lecture 152 Source Code

    Lecture 153 The Zip Function

    Lecture 154 Source Code

    Lecture 155 Two Dimensional Arrays

    Lecture 156 Source Code

    Section 8: Dictionaries & Sets in Python

    Lecture 157 Intro - What is dictionary & set

    Lecture 158 How to create a dictionary in Python

    Lecture 159 Source Code

    Lecture 160 Iterate through a dictionary

    Lecture 161 Source Code

    Lecture 162 Access, Update and Insert new Entities to your Dictionary

    Lecture 163 Source Code

    Lecture 164 Remove Entities From your Dictionary

    Lecture 165 Source Code

    Lecture 166 Get Function

    Lecture 167 Source Code

    Lecture 168 Keys & Values Methods and Operations

    Lecture 169 Source Code

    Lecture 170 Dictionary Comparison

    Lecture 171 Source Code

    Lecture 172 Sets

    Lecture 173 Source Code

    Lecture 174 Comparing Sets

    Lecture 175 Source Code

    Lecture 176 Union Function

    Lecture 177 Source Code

    Lecture 178 Intersection Function

    Lecture 179 Source Code

    Lecture 180 Difference Function

    Lecture 181 Source Code

    Lecture 182 Symmetric Difference Function

    Lecture 183 Source Code

    Lecture 184 IsDisjoint Function

    Lecture 185 Source Code

    Lecture 186 Update Method

    Lecture 187 Source Code

    Lecture 188 Add Method

    Lecture 189 Source Code

    Lecture 190 Remove Method

    Lecture 191 Source Code

    Section 9: Array Oriented Programming With Numpy

    Lecture 192 Intro

    Lecture 193 Creating Arrays & Two Dimensional Arrays Using Numpy

    Lecture 194 Source Code

    Lecture 195 Numpy Array Attributes

    Lecture 196 Source Code

    Lecture 197 Populate your array with special values

    Lecture 198 Source Code

    Lecture 199 Create Arrays Using Ranges

    Lecture 200 Source Code

    Section 10: Master Strings in Python

    Lecture 201 Intro

    Lecture 202 Presentation Types

    Lecture 203 Source Code

    Lecture 204 Field Widths & Alignment

    Lecture 205 Source Code

    Lecture 206 Numeric Formatting

    Lecture 207 Source Code

    Lecture 208 String's Format Method

    Lecture 209 Source Code

    Lecture 210 Concatenating & Repeating Strings

    Lecture 211 Source Code

    Lecture 212 Stripping Whitespace From Strings

    Lecture 213 Source Code

    Section 11: Files & Exceptions in Python

    Lecture 214 Intro

    Lecture 215 Learn about files in Python - How Python treats them?

    Lecture 216 How to write to a text file

    Lecture 217 Source Code

    Lecture 218 How to read data from a text file

    Lecture 219 Source Code

    Lecture 220 Update your text file

    Lecture 221 Source Code

    Lecture 222 Exception Handling

    Lecture 223 Facing Invalid Data or Input

    Lecture 224 Source Code

    Lecture 225 Try Statement

    Lecture 226 Source Code

    Lecture 227 Finally Clause

    Lecture 228 Source Code

    Lecture 229 Extra point: Wrap the with statement with try suit

    Lecture 230 Source Code

    Section 12: Object Oriented Programming

    Lecture 231 Intro

    Lecture 232 Create your custom class

    Lecture 233 Source Code

    Lecture 234 Attribute access control

    Lecture 235 Properties

    Lecture 236 Source Code

    Lecture 237 Private attribute simulation

    Lecture 238 Source Code

    Lecture 239 Inheritance

    Lecture 240 Source Code

    Lecture 241 Polymorphism

    Lecture 242 Source Code

    Lecture 243 Duck typing

    Lecture 244 Source Code

    Lecture 245 Object class

    Lecture 246 Operator overloading

    Section 13: Natural Language Processing (NLP)

    Lecture 247 Intro

    Lecture 248 Get Textblob

    Lecture 249 Create Textblobg

    Lecture 250 Source Code

    Lecture 251 Text tokenizing

    Lecture 252 Source Code

    Lecture 253 Parts of speech tagging

    Lecture 254 Source Code

    Lecture 255 Noun phrase extraction

    Lecture 256 Source Code

    Lecture 257 Textblob's default sentiment analyzer

    Lecture 258 Source Code

    Lecture 259 NaiveBayesAnalyzer

    Lecture 260 Source Code

    Lecture 261 Language detection and translation

    Lecture 262 Source Code

    Lecture 263 Pluralization & Singularization

    Lecture 264 Source Code

    Lecture 265 Spell checking & Correction

    Lecture 266 Source Code

    Section 14: Twitter Data Mining

    Lecture 267 Intro

    Lecture 268 Create your twitter developer account

    Lecture 269 Get yourself comfortable with reading Twitter API docs

    Lecture 270 Create your first twitter app project and access the private credentials

    Lecture 271 Install the tweepy module on your system

    Lecture 272 Authenticate with twitter

    Lecture 273 Source Code

    Lecture 274 Access information of a twitter account

    Lecture 275 Source Code

    Lecture 276 Access user's followers and friends by using cursor object

    Lecture 277 Source Code

    Lecture 278 Find out who the user's followers are!

    Lecture 279 Source Code

    Lecture 280 Find out who the user's followings are!

    Lecture 281 Source Code

    Lecture 282 Get user's latest tweets

    Lecture 283 Source Code

    Lecture 284 Search the recent tweets

    Lecture 285 Source Code

    Section 15: IBM Watson & Cognitive Computing

    Lecture 286 Intro

    Lecture 287 IBM Watson explained

    Lecture 288 Create an IBM cloud account

    Lecture 289 Install the necessary components

    Lecture 290 Translator app demo

    Lecture 291 Translator app to do list

    Lecture 292 Register for the speech to text service

    Lecture 293 Register for the text to speech service

    Lecture 294 Register for the language translator service

    Lecture 295 Import Watson SDK classes and media modules

    Lecture 296 Source code

    Lecture 297 Translate function & entry point

    Lecture 298 Source Code

    Lecture 299 Record user's voice function

    Lecture 300 Source code

    Lecture 301 Step #1 : Record english audio

    Lecture 302 Source code

    Lecture 303 Speech to text function

    Lecture 304 Source code

    Lecture 305 Step #2: Transcribe english speech to english text

    Lecture 306 Source code

    Lecture 307 Translate function

    Lecture 308 Source code

    Lecture 309 Step #3: Translate the english text into french text

    Lecture 310 Source code

    Lecture 311 Text to speech function

    Lecture 312 Source code

    Lecture 313 Step #4: Convert the french text into spoken french audio

    Lecture 314 Source code

    Lecture 315 Play function

    Lecture 316 Source code

    Lecture 317 Step #5: Play french audio

    Lecture 318 Source code

    Lecture 319 Step #6: Record french audio

    Lecture 320 Source code

    Lecture 321 Step #7: Transcribe the french speech to french text

    Lecture 322 Source code

    Lecture 323 Step #8: Translate the french text into english text

    Lecture 324 Source code

    Lecture 325 Step #9: Convert the english text into spoken english audio

    Lecture 326 Source code

    Lecture 327 Step #10: Play english audio & finishing touches

    Lecture 328 Source code

    Lecture 329 Project source code

    Section 16: Machine learning in Python

    Lecture 330 Intro

    Lecture 331 Machine Learning Types

    Lecture 332 Classification model

    Lecture 333 Scikit-Learn library

    Lecture 334 Datasets

    Lecture 335 Digits dataset

    Lecture 336 K-Nearest Neighbors Algorithm

    Lecture 337 Hyperparameters

    Lecture 338 Loading the digits dataset

    Lecture 339 Source code

    Lecture 340 Target & Data attributes

    Lecture 341 Source code

    Lecture 342 Set up data

    Lecture 343 Source code

    Lecture 344 Create a diagram

    Lecture 345 Source code

    Lecture 346 Display digit images

    Lecture 347 Source code

    Lecture 348 Splitting data for training and testing purposes

    Lecture 349 Source code

    Lecture 350 Training & Testing size customization

    Lecture 351 Source code

    Lecture 352 Create the Model

    Lecture 353 Source code

    Lecture 354 Train the Model

    Lecture 355 Source code

    Lecture 356 Predict data & Test your model

    Lecture 357 Source code

    Lecture 358 Final source code

    Section 17: Deep learning in Python

    Lecture 359 Introduction

    Lecture 360 Deep learning models

    Lecture 361 Neural networks

    Lecture 362 Artificial neurons

    Lecture 363 Artificial Neural Network Diagram

    Lecture 364 Iterative learning process

    Lecture 365 How synapses are activated

    Lecture 366 Backpropagation technique

    Lecture 367 Tensors

    Lecture 368 Convnets

    Lecture 369 MNIST digits dataset

    Lecture 370 Probabilistic classification

    Lecture 371 Keras reproducibility

    Lecture 372 Keras neural network components

    Lecture 373 Loading MNIST Dataset

    Lecture 374 Source code

    Lecture 375 Explore MNIST Data

    Lecture 376 Source code

    Lecture 377 Digits visualization

    Lecture 378 Source code

    Lecture 379 Data preparation process - Reshaping

    Lecture 380 Source code

    Lecture 381 Data preparation - Normalization

    Lecture 382 Source code

    Lecture 383 Data preparation - Converting labels to categorical data

    Lecture 384 Source code

    Lecture 385 Neural Network Creation

    Lecture 386 Source code

    Lecture 387 Integrating layers into the network

    Lecture 388 Source code

    Lecture 389 The Convolution Process

    Lecture 390 Add Conv2D Layer

    Lecture 391 Source code

    Lecture 392 Conv2D Output Dimensionality

    Lecture 393 Overfitting

    Lecture 394 Add a Pooling Layer

    Lecture 395 Source code

    Lecture 396 Add One More Convolution Layer

    Lecture 397 Source code

    Lecture 398 Add one more pooling layer

    Lecture 399 Source code

    Lecture 400 Add Flatten Layer

    Lecture 401 Source code

    Lecture 402 Add a Dense Layer to reduce the features

    Lecture 403 Source code

    Lecture 404 Add a Dense Layer to produce the final results

    Lecture 405 Source code

    Lecture 406 Model's Summary

    Lecture 407 Source code

    Lecture 408 Model Structure Visualization

    Lecture 409 Source code

    Lecture 410 Compile the model

    Lecture 411 Source code

    Lecture 412 Train the model

    Lecture 413 Source code

    Lecture 414 Evaluate the model

    Lecture 415 Source code

    Lecture 416 Predict data

    Lecture 417 Source code

    Lecture 418 Display the incorrect predictions

    Lecture 419 Source code

    Lecture 420 Visualize the incorrect predictions

    Lecture 421 Source code

    Lecture 422 Access the wrong predictions’ probabilities

    Lecture 423 Source code

    Lecture 424 Saving & Loading our model

    Lecture 425 Source code

    Section 18: Big Data

    Lecture 426 Databases

    Lecture 427 Relational databases

    Lecture 428 Create a sqlite database

    Lecture 429 Source code

    Lecture 430 Create a table

    Lecture 431 Source code

    Lecture 432 Create a list of martial arts

    Lecture 433 Source code

    Lecture 434 Insert data into the database

    Lecture 435 Source code

    Lecture 436 Access the database data

    Lecture 437 Source code

    Lecture 438 Update the database data

    Lecture 439 Source code

    Lecture 440 Delete the database data

    Lecture 441 Source code

    Section 19: Data Science

    Lecture 442 Intro to datascience

    Lecture 443 Descriptive statistics

    Lecture 444 Source code

    Lecture 445 Measures of central tendency

    Lecture 446 Mean

    Lecture 447 Source code

    Lecture 448 Median

    Lecture 449 Source code

    Lecture 450 Mode

    Lecture 451 Source code

    Lecture 452 Measures of Dispersion

    Lecture 453 Variance

    Lecture 454 Source code

    Lecture 455 Standard deviation

    Lecture 456 Source code

    Lecture 457 Static visualization

    Lecture 458 Import the necessary modules

    Lecture 459 Source code

    Lecture 460 Roll the dice

    Lecture 461 Source code

    Lecture 462 Set the title and style of your visualization

    Lecture 463 Source code

    Lecture 464 Start the visualization

    Lecture 465 Source code

    Lecture 466 Setting up title for each bar

    Lecture 467 Source code

    People with no programming experience who are curious about creating their own Python & Data Science applications,Beginner Python developers who are curious about creating Data Science applications,People who are curious about Natural Language Processing (NLP) and want to develop their own NLP applications with Python,People who are curious about making their computers smart using Machine Learning & Deep Learning with Python,People who are curious about mining precious data from twitter and create their own marketing applications with Python,People who are curious about cognitive programming and want to create smart applications by taking advantage of unstructured data