Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    Outlier Detection in Python (MEAP V01)

    Posted By: Free butterfly
    Outlier Detection in Python (MEAP V01)

    Outlier Detection in Python (MEAP V01) by Brett Kennedy
    English | 2024 | ISBN: 9781633436473 | 283 pages | MOBI | 4.36 Mb

    Learn how to find the unusual, interesting, extreme, or inaccurate parts of your data.

    Outliers can be the most informative parts of your data, revealing hidden insights, novel patterns, and potential problems. For a business, this can mean finding new products, expanding markets, and flagging fraud or other suspicious activity. Outlier Detection in Python introduces the tools and techniques you’ll need to uncover the parts of a dataset that don’t look like the rest, even when they’re the more hidden or intertwined among the expected bits.

    In Outlier Detection in Python you’ll learn how to
    Use standard Python libraries to identify outliers
    Pick the right detection methods
    Combine multiple outlier detection methods for improved results
    Interpret your results
    Work with numeric, categorical, time series, and text data

    Outlier detection (OD) is a vital tool for everything from financial auditing to network security. OD techniques also work for testing datasets for quality, collection errors, and data drift. This unique guide introduces the core tools of outlier detection like scikit-learn and PyOD, the principal algorithms used in outlier detection, and common pitfalls you might encounter.

    about the book
    Outlier Detection in Python is a comprehensive guide to the statistical methods, machine learning, and deep learning approaches you can use to detect outliers in different types of data. Throughout the book, you’ll find real-world examples taken from author Brett Kennedy’s extensive experience developing outlier detection tools for financial auditors and social media analysis. Plus, the book’s emphasis on interpretability ensures you can identify why your outliers are unusual and make informed decisions from your detection results. Each key concept and technique is illustrated with clear Python examples. All you’ll need to get started is a basic understanding of statistics and the Python data ecosystem.

    about the reader
    For Python programmers familiar with tools like pandas and NumPy, and the basics of statistics.

    about the author
    Brett Kennedy is a data scientist with over thirty years’ experience in software development and data science. He has worked in outlier detection related to financial auditing, fraud detection, and social media analysis. He previously led a research team focusing on outlier detection.

    Feel Free to contact me for book requests, informations or feedbacks.
    Without You And Your Support We Can’t Continue
    Thanks For Buying Premium From My Links For Support