Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Qft In Curved Spacetime: Hawking Radiation, Unruh Effect

    Posted By: ELK1nG
    Qft In Curved Spacetime: Hawking Radiation, Unruh Effect

    Qft In Curved Spacetime: Hawking Radiation, Unruh Effect
    Published 3/2025
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 14.24 GB | Duration: 16h 56m

    Quantum Field Theory in curved spacetime, Hawking radiation, Unruh effect, quantum corrections to General Relativity

    What you'll learn

    Understand Quantum Fields in Curved Spacetime: Learn how quantum fields are formulated in non-Minkowskian geometries, explore vacuum states

    Analyze Black Hole Thermodynamics and Radiation: Derive and interpret Hawking radiation, study black hole entropy, and examine evaporation processes

    Master Mathematical Techniques for Quantum Corrections to Gravity: Develop proficiency in path integrals, heat kernel methods, zeta function regularization

    Apply QFT in Curved Spacetime to Modern Research Topics: Investigate the Unruh effect, semiclassical gravity, quantum corrections to General Relativity

    Explore the Role of Bogolyubov Transformations and Vacuum States: Understand how Bogolyubov coefficients relate different vacuum states, analyze Rindler vacuum

    Develop a Strong Foundation in Lorentz and Poincaré Representations: apply these techniques to derive the DIrac equation in curved spacetime

    Requirements

    Background in Quantum Field Theory and General Relativity: Students should have a solid understanding of QFT and GR, including classical field theory, the Klein-Gordon equation, and the basics of curved spacetime.

    Mathematical Proficiency: Familiarity with functional analysis, differential geometry, and advanced calculus is strongly recommended, as these mathematical tools are extensively used throughout the course.

    Exposure to Path Integrals and Operator Formalism: While a full mastery is not required, prior exposure to the path integral formulation and operator-based quantization methods in quantum mechanics and QFT will be beneficial.

    Description

    This advanced course examines the interface of quantum field theory (QFT) and general relativity, focusing on the theoretical and mathematical structures that govern quantum fields in curved spacetime. The course is intended for graduate students, researchers, as well as professionals in theoretical physics.The syllabus includes the following key topics (not necessarily in this order):Foundations of QFT in Curved SpacetimeDefinition of quantum fields in non-Minkowskian geometries.Vacuum states, particle creation, and the semiclassical approach.Hawking RadiationDerivation and analysis of black hole radiation.Implications for black hole thermodynamics and entropy.Black hole lifetime and evaporation processesInsights from the holographic principle and Loop Quantum GravityThe Unruh EffectExamination of vacuum fluctuations as perceived by uniformly accelerated observers.Theoretical connection to the Rindler horizon and thermal effects.Rindler and Minkowski vacua, and the role of Bogolyubov coefficientsConnection between acceleration, temperature, and entropyMathematical Framework for the Calculation of Quantum Corrections to GravityPath integral formulation and its application to curved spacetimeHeat kernel methods, zeta function regularization, and renormalizationEuclidean quantum gravity and effective action approachesLorentz and Poincaré group representations in curved spacetimeApplications to Quantum Gravity & CosmologyQuantum corrections to General Relativity from effective field theoryScalar fields in expanding universes and inflationary modelsCasimir force, semiclassical gravity, and emergent spacetime modelsBy the end of the course, students will develop a thorough understanding of the core theoretical principles of QFT in curved spacetime, as well as their implications for fundamental physics. The course will equip participants with the tools necessary to engage in more advanced research in quantum gravity, black hole physics, and cosmology.Prerequisites:Participants should have a solid foundation in QFT and general relativity. Familiarity with advanced mathematical methods, including functional analysis and differential geometry, is strongly recommended. However, the first section recalls those relevant concepts of QFT, which are used extensively throughout the course.Course Format:The course is structured around "formal" lectures (aiming to stimulate physical and mathematical intuition), and critical discussions of seminal and contemporary research literature. It aims to provide a rigorous and comprehensive understanding of the subject.

    Overview

    Section 1: Introduction to the course

    Lecture 1 General introductory video

    Lecture 2 What is Quantum Field Theory in curved spacetime?

    Lecture 3 Book resources (which are NOT mandatory to follow the course)

    Lecture 4 More information about the content of the course

    Section 2: Recap on Quantum Field Theory for scalar fields

    Lecture 5 introduction to the section dedicated to the recap on QFT

    Lecture 6 Reconciling quantum mechanics and Special Relativity

    Lecture 7 Review of Classical Field Theory part 1

    Lecture 8 Review of Classical Field Theory part 2

    Lecture 9 Klein Gordon equation derived from Classical field theory

    Lecture 10 Quantization of a Classical Field part 1

    Lecture 11 Quantization of a Classical Field part 2

    Lecture 12 Derivation of the spectrum of the Hamiltonian part 1

    Lecture 13 Expression of the energy momentum tensor in Field Theory

    Lecture 14 Annihilation and creation operators to determine the spectrum of the Hamiltonian

    Lecture 15 Ground state and construction of states with a certain number of quanta

    Lecture 16 Definition of the number operator

    Lecture 17 Number operator acting on a two-particle state

    Lecture 18 Invariant volume element in QFT

    Section 3: Unruh effect and Hawking radiation

    Lecture 19 lightcone coordinates

    Lecture 20 scalar field in curved space, Rindler vacuum, Minkowski vacuum

    Lecture 21 Bogolyubov transformations

    Lecture 22 Coefficients in the Bogolyubov transformations

    Lecture 23 Bogolyubov normalization condition

    Lecture 24 Unruh effect

    Lecture 25 Hawking radiation

    Lecture 26 Thermodynamics of black holes

    Lecture 27 The lifetime of blackholes

    Lecture 28 Holographic principle and emergent gravity

    Lecture 29 Black holes from the perspective of Loop Quantum Gravity

    Lecture 30 The connection between General Relativity and thermodynamics

    Lecture 31 Classical scalar field in an expanding universe

    Lecture 32 Appendix on the Planck length

    Section 4: Recap on Path Integrals

    Lecture 33 Derivation of the path integral

    Lecture 34 Mathematical and physical intuition behind the path integral

    Lecture 35 Heuristic derivation of the path integral from classical field theory

    Lecture 36 A different perspective: from the path integral to the Schrodinger equation

    Lecture 37 Double Slit Experiment Analysis Using Path Integrals (implementation in MATLAB)

    Lecture 38 Double-Slit Experiment using Path Integrals: some more physical considerations

    Lecture 39 Appendix: Solving an Integral from Feynman's Book on Path Integrals

    Section 5: Difficulties in the quantization of gravity

    Lecture 40 Semiclassical gravity

    Lecture 41 Why Quantum Gravity is hard

    Lecture 42 Some possible approaches to Quantum Gravity: qualitative considerations

    Section 6: Quantum effects of fields in vacuum: Casimir effect

    Lecture 43 Quantum effects in vacuum: Casimir force in 1+1 dimensions

    Lecture 44 Speculative considerations on Casimir effect and possible gravitational effects

    Section 7: Quantum effects in gravity: path integrals in curved spacetime, Heat kernel

    Lecture 45 Euclidean action for a scalar field coupled to gravity

    Lecture 46 Effective action as a functional determinant

    Lecture 47 Reformulation of the eigenvalue problem of a scalar field coupled to gravity

    Lecture 48 Zeta function of a mathematical operator

    Lecture 49 Heat kernel and quantum corrections to General Relativity

    Lecture 50 Calculation of the Heat kernel in curved space part 1

    Lecture 51 Calculation of the Heat kernel in curved space part 2

    Lecture 52 Calculation of the Heat kernel in curved space part 3: matrix elements of K0

    Lecture 53 Calculation of the Heat kernel in curved space part 4: matrix elements of K1

    Lecture 54 Calculation of the Heat kernel in curved space part 5: corrections to GR

    Lecture 55 Appendix: why can we make anything uself out of divergences in physics?

    Section 8: Lorentz group, representations, spinors, Dirac equation in curved spacetime

    Lecture 56 Lorentz and Poincare groups, representations, angular momentum, Lie algebras

    Lecture 57 Derivation of the Lorentz Lie algebra

    Lecture 58 Transformation of a vector field according to the Lorentz algebra

    Lecture 59 Transformation of a spinor field derived by generalizing a vector field

    Lecture 60 The generators of the transformation of a vector satisfy the Lorentz algebra

    Lecture 61 The generators of the transformation of a spinor satisfy the Lorentz algebra

    Lecture 62 Derivation of the commutator of angular momentum from the Lorentz Lie algebra

    Lecture 63 Tetrads and Dirac equation in curved spacetime

    Lecture 64 Appendix on the exponential of a matrix

    Graduate Students & Researchers in Theoretical Physics: This course is designed for students pursuing master's or PhD-level studies in quantum field theory, general relativity, or related fields. It provides a deep exploration of QFT in curved spacetime, preparing learners for advanced research.,Physicists and Mathematicians Interested in Quantum Gravity: Researchers working in high-energy physics, cosmology, and mathematical physics will benefit from the rigorous treatment of topics such as black hole thermodynamics, semiclassical gravity, and quantum corrections to General Relativity.,Professionals Seeking Advanced Knowledge in Modern Theoretical Physics: Engineers, computational physicists, and professionals with a strong background in mathematical physics who want to understand quantum field theory beyond flat spacetime will find this course valuable.,Self-Learners with a Strong Theoretical Foundation: Passionate individuals with prior exposure to QFT and general relativity, even outside formal academia, will be able to follow the material, provided they have the necessary mathematical background.