Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Python And Machine Learning For Complete Beginners

    Posted By: ELK1nG
    Python And Machine Learning For Complete Beginners

    Python And Machine Learning For Complete Beginners
    Published 3/2023
    MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
    Language: English | Size: 28.61 GB | Duration: 43h 31m

    Become Part of the Artificial Intelligence Revolution

    What you'll learn

    Learn how to program in Python

    Discover machine learning

    Use artificial intelligence in your programs

    Learn how to analyse data and make predictions

    Requirements

    Only basic computer knowledge needed

    Basic algebra knowledge useful, but not required

    Description

    This course teaches you computer programming in Python from scratch, and also the basics of machine learning in Python.With this course you can become part of the Artificial Intelligence revolution.You'll learn:How to write programs in PythonThe basics of desktop programming in PythonObject-oriented programming and functional programming techniquesHow to use machine learning techniques in your codeThe basics of visualising and analysing dataNumpy, Pandas, Matplotlib, scikit-learn, Keras and morePowerful prediction and classification techniques "naive Bayes" and decision trees.How to use ML techniques to make predictions about data series, spot clusters in data, automatically classify data samples and recognise handwritten digits.Whether you're a complete beginner with coding or already know some Python or another language, this course can help give you modern computer skills to the point where you could apply for Python jobs, where available.Python is one of the most popular programming languages today and is especially popular because of its support for machine learning and artificial intelligence.This courses takes you all the way from writing your first "hello world" Python program to being able to write complex programs incorporating artificial intelligence techniques in which your software can automatically learn how to complete tasks.I'll type all code right in front of you and explain how it works, breaking down programming and mathematical concepts into simple steps, and with suggested exercises throughout.

    Overview

    Section 1: Getting Started

    Lecture 1 Introduction

    Lecture 2 How to Use This Course

    Lecture 3 Installing Python

    Lecture 4 Installing Powershell

    Lecture 5 Python Virtual Environments

    Lecture 6 Visual Studio Code: A Free Lightweight Editor

    Lecture 7 Hello World

    Lecture 8 The Shebang or Hashbang

    Lecture 9 Where to Find the Source Code

    Lecture 10 Visual Studio Code Tips

    Lecture 11 Variables

    Lecture 12 An Interactive Program

    Lecture 13 Builtin Functions

    Lecture 14 Numeric Variables

    Lecture 15 Numeric Expressions

    Lecture 16 Python Types

    Lecture 17 Performing Calculations

    Lecture 18 Converting Temperatures

    Section 2: Loops and Conditions

    Lecture 19 A Program Inspired by "WarGames"

    Lecture 20 Boolean Variables

    Lecture 21 The "If" Statement

    Lecture 22 If Else

    Lecture 23 Constants

    Lecture 24 If-Else-If

    Lecture 25 Comparison Operators

    Lecture 26 Fridge Exercise

    Lecture 27 Solving the Fridge Exercise

    Lecture 28 Improving the Fridge Solution

    Lecture 29 "For" Loops

    Lecture 30 Ranges

    Lecture 31 Indentation

    Lecture 32 The "Break" Keyword

    Lecture 33 The "Continue" Keyword

    Lecture 34 A Password Exercise

    Lecture 35 A Solution to the Password Exercise

    Lecture 36 Boolean Operators

    Lecture 37 Boolean Operators Exercise

    Lecture 38 A Solution to the Boolean Operators Exercise

    Lecture 39 Another Solutiion to the Boolean Operators Exercise

    Lecture 40 "While" Loops

    Section 3: Structure Code with Functions

    Lecture 41 Your First Function

    Lecture 42 Multiple Functions

    Lecture 43 Function Arguments

    Lecture 44 The "id" Function

    Lecture 45 Changing Parameter Variables

    Lecture 46 Return Values

    Lecture 47 Passing Multiple Arguments

    Lecture 48 Calculating Factorials Exercise

    Lecture 49 A Solution to the Factorial Exercise

    Lecture 50 Default Arguments

    Lecture 51 Keyword Arguments

    Lecture 52 Variable Length Arguments

    Lecture 53 Variable Length Keyword Arguments

    Lecture 54 Arguments and Parameters Summary

    Lecture 55 A Solution to the Arguments Exercise

    Lecture 56 Multiple Return Values

    Lecture 57 A Solution to the BMI Exercise

    Section 4: Containers: Lists, Tuples, Sets and Dictionaries

    Lecture 58 Tuples

    Lecture 59 Packing and Unpacking Tuples

    Lecture 60 Tuple Slicing

    Lecture 61 Tuple Functions and Operators

    Lecture 62 Lists

    Lecture 63 Joining Lists

    Lecture 64 Modifying Lists

    Lecture 65 Extended Slicing

    Lecture 66 Extending and Inserting Into Lists

    Lecture 67 Removing List Items

    Lecture 68 List Comprehensions: Flexibly Creating Lists

    Lecture 69 List Comprehension Conditions

    Lecture 70 List Comprehension "if-else"

    Lecture 71 List Database Exercise

    Lecture 72 List Exercise Tips

    Lecture 73 Structuring a Solution to the List Exercise

    Lecture 74 Completing the List Exercise Solution

    Lecture 75 About Data Validation

    Lecture 76 Sets: Collections of Unique Objects

    Lecture 77 Adding to Sets and Updating Sets

    Lecture 78 Removing Items from Sets

    Lecture 79 The Union and Intersection of Sets

    Lecture 80 Difference Updates

    Lecture 81 A Set Exercise

    Lecture 82 A Solution to the Set Exercise

    Lecture 83 Python Dictionaries

    Lecture 84 Adding Items to Dictionaries

    Lecture 85 Iterating Over Dictionaries

    Lecture 86 Dictionary Views

    Lecture 87 Deleting Dictionary Items

    Lecture 88 The Dictionary "Get" Method

    Lecture 89 Default Dictionaries

    Lecture 90 Dictionary Comprehensions

    Lecture 91 A Dictionary Exercise

    Lecture 92 A Solution to the Dictionary Exercise

    Lecture 93 Casefolding and "None"

    Lecture 94 Enumerating and Zipping

    Lecture 95 Improving the Dictionary Exercise Solution

    Lecture 96 Hashing Algorithms

    Lecture 97 Containers Summary

    Lecture 98 Time Complexity and Big O

    Lecture 99 Lists of Lists

    Lecture 100 Iterating Over Lists of Lists

    Lecture 101 Dictionaries of Lists

    Lecture 102 A Dictionaries of Sets Exercise

    Lecture 103 The First Part of A Solution to the Dictionaries of Sets Exercise

    Lecture 104 The Second Part of the Solution to the Dictionaries of Sets Exercise

    Lecture 105 Global Variables

    Lecture 106 Selecting Items at Random

    Lecture 107 Modular Arithmetic and the Modulus Operator

    Lecture 108 An Exercise Using Multiple Containers

    Lecture 109 The First Part of a Solution to the Containers Exercise

    Lecture 110 The Second Part of the Solution to the Containers Exercise

    Section 5: Formatting Strings

    Lecture 111 A Review of Strings

    Lecture 112 Formatting Strings

    Lecture 113 The Format Method

    Lecture 114 F-Strings

    Lecture 115 Raw Strings

    Section 6: Regular Expressions

    Lecture 116 A Simple Regular Expression

    Lecture 117 Matching Multiple Characters

    Lecture 118 The Ternary Operator

    Lecture 119 Greedy Matching

    Lecture 120 Matching Numbers and Words

    Lecture 121 Capture Groups

    Lecture 122 Matching Specific Numbers of Characters

    Lecture 123 Character Classes

    Lecture 124 A Solution to the Email Address-Matching Exercise

    Lecture 125 Using "Not" in Character Classes

    Lecture 126 Escaping Regexes

    Lecture 127 Comments and Space in Regular Expressions

    Lecture 128 Referring to Capture Groups in Regexes

    Lecture 129 Capture Groups and Non-Capture Groups

    Lecture 130 Matching Newlines

    Lecture 131 Matching Ends of Lines

    Lecture 132 The "Search" Function

    Lecture 133 The "Findall" Function

    Lecture 134 Matching Starts of Lines

    Lecture 135 Splitting Strings

    Lecture 136 Replacing Text

    Lecture 137 Alternatives in Regexes

    Lecture 138 A "Budget" Exercise

    Lecture 139 The First Part of a Solution to the Budget Exercise

    Lecture 140 The Second Part of the Solution to the Budget Exercise

    Lecture 141 Ignoring Case in Regular Expressions

    Lecture 142 Compiling Regular Expressions

    Lecture 143 Zero-Width Lookahead Assertions

    Lecture 144 Some More Useful Regex Sequences

    Lecture 145 Summary of Regular Expressions

    Section 7: Handling Errors

    Lecture 146 Tracebacks

    Lecture 147 Try-Except

    Lecture 148 Catching Specific Errors

    Lecture 149 Error Messages

    Lecture 150 Raising Errors

    Lecture 151 The KeyboardInterrupt Error

    Lecture 152 The Finally Clause

    Lecture 153 An Exercise with Errors

    Lecture 154 A Solution to the Errors Exercise

    Lecture 155 An Exercise on Calculating Pi

    Lecture 156 A Solution to the Pi Exercise

    Lecture 157 Using Assertions

    Section 8: Object-Oriented Programming

    Lecture 158 Classes

    Lecture 159 Constructors

    Lecture 160 The Mysterious 'Self' Variable

    Lecture 161 Object Properties

    Lecture 162 Creating String Representations of Objects

    Lecture 163 Encapsulation

    Lecture 164 An Object-Oriented Word Game

    Lecture 165 Choosing Words

    Lecture 166 Guessing Letters

    Lecture 167 Displaying Letters

    Lecture 168 Completing the Word Game

    Lecture 169 Getters and Setters

    Lecture 170 Inheritance

    Lecture 171 Overriding Methods

    Lecture 172 Polymorphism

    Lecture 173 Super Constructors

    Lecture 174 Class Properties

    Lecture 175 Automatically Assigning IDs to Objects

    Lecture 176 Class Methods

    Lecture 177 Object and Classes

    Lecture 178 An Exercise in Object Orientation

    Lecture 179 First Part of a Solution to the Object Orientation Exercise

    Lecture 180 Second Part of the Solution to the Object Orientation Exercise

    Lecture 181 Third Part of the Solution to the Object Orientation Exercise

    Lecture 182 Class Hierarchies

    Lecture 183 Multiple Inheritance

    Lecture 184 The Diamond Problem

    Lecture 185 Mixins

    Lecture 186 The Property Class

    Section 9: Conway's Game of Life

    Lecture 187 Introducing Conway's Game of Life

    Lecture 188 A Basic GUI App

    Lecture 189 Using Frames

    Lecture 190 Refactoring Into an "OO" Structure

    Lecture 191 Laying Out Widgets with Grids

    Lecture 192 A Canvas Class

    Lecture 193 Getting Widget Sizes

    Lecture 194 Drawing Cells

    Lecture 195 A Cell Class

    Lecture 196 Toggling Cell States

    Lecture 197 Handling Button Clicks

    Lecture 198 Selecting Neighbouring Cells

    Lecture 199 Wrapping Cell Selection

    Lecture 200 The Game of Life Rules

    Lecture 201 Implementing the Game of Life Rules

    Lecture 202 Clearing the Grid

    Lecture 203 Randomising Cell Selection

    Section 10: Modules: Packaging Code

    Lecture 204 A Basic Module

    Lecture 205 Conditionally Running 'Main'

    Lecture 206 Importing Parts of Modules

    Lecture 207 Packages

    Lecture 208 A Games Package

    Lecture 209 Using Functions in Dictionaries

    Lecture 210 A Solution to the Games Menu Exercise

    Lecture 211 Package Initialisation

    Lecture 212 How Python Locates Modules

    Lecture 213 Inspecting Modules

    Lecture 214 Subpackages

    Lecture 215 Package Attributes

    Lecture 216 Referencing Parallel Modules

    Lecture 217 Installing Modules

    Section 11: Operators

    Lecture 218 A Clock Class Exercise

    Lecture 219 A Solution to the Clock Exercise

    Lecture 220 Implementing 'Add'

    Lecture 221 Implementing Unary Operators

    Lecture 222 Flags

    Lecture 223 Bitwise 'Or'

    Lecture 224 Bitwise Flags

    Lecture 225 Bitwise 'And'

    Lecture 226 A Flags Exercise

    Lecture 227 A Solution to the Flags Exercise

    Lecture 228 Bitwise 'xor' and 'not'

    Lecture 229 Bit Shift Operators

    Lecture 230 Hexadecimal Numbers

    Lecture 231 A Solution to the Hexadecimal Colours Exercise

    Section 12: Functional Programming

    Lecture 232 Introducing Functional Programming

    Lecture 233 Recursion

    Lecture 234 Passing Functions to Functions

    Lecture 235 Iterators

    Lecture 236 Powers of Two Iterator

    Lecture 237 Mapping

    Lecture 238 Lambda Functions

    Lecture 239 Defining Functions in Loops

    Lecture 240 Lambda Exercise Solution

    Lecture 241 Sorting

    Lecture 242 "Next" and "Iter"

    Lecture 243 Generating Characters

    Lecture 244 Generators

    Lecture 245 An Exercise with Generators

    Lecture 246 Generators Exercise Solution

    Lecture 247 General Generators Syntax

    Lecture 248 Generators as Loops

    Lecture 249 Game of Life Exercise Solution

    Lecture 250 The Itertools Module

    Lecture 251 Function Generators

    Lecture 252 Powers of Two Generator Solution

    Lecture 253 Filtering

    Lecture 254 Reducing

    Lecture 255 A Functional Word Exercise

    Lecture 256 Solution to the Word Exercise

    Lecture 257 A Functional Parsing Exercise

    Lecture 258 Solution to the Functional Parsing Exercise

    Section 13: Reading and Writing Files

    Lecture 259 The Mall Customers Database

    Lecture 260 Reading Files

    Lecture 261 Ensuring Files Are Closed

    Lecture 262 Examining "With"

    Lecture 263 Iterating Over Files

    Lecture 264 Writing Files

    Lecture 265 Files Exercise Solution

    Lecture 266 Appending to Files

    Lecture 267 Handling Binary Text Data

    Lecture 268 Binary Files

    Lecture 269 Serialization

    Lecture 270 Serializing Integers

    Lecture 271 Deserializing Integers

    Lecture 272 Saving and Loading Integers

    Lecture 273 Numbers Versus Bytes

    Lecture 274 Python Arrays

    Lecture 275 Saving Arrays

    Lecture 276 Pickling

    Lecture 277 JSON

    Lecture 278 File Dialogs

    Lecture 279 Game of Life Menus

    Lecture 280 Game of Life Save and Load

    Lecture 281 Testing the Game of Life Updates

    Lecture 282 The OS Module

    Lecture 283 A Word Count Exercise

    Lecture 284 Splitting Text Into Words

    Lecture 285 Counting Words

    Section 14: Numpy: Numerical Python

    Lecture 286 Numpy Arrays

    Lecture 287 Creating Numpy Arrays

    Lecture 288 Numpy Arithmetic

    Lecture 289 Numpy Slicing

    Lecture 290 2D Indexing

    Lecture 291 Numpy Views

    Lecture 292 Advanced Indexing

    Lecture 293 Matrices

    Lecture 294 Matrix Multiplication

    Lecture 295 Numpy Functions

    Lecture 296 An Exercise with Numpy

    Lecture 297 Numpy Exercise Solution First Part

    Lecture 298 Numpy Exercise Solution Second Part

    Lecture 299 Tiling

    Lecture 300 Masks

    Lecture 301 Combining Boolean Arrays

    Lecture 302 Filtering Numpy Arrays

    Lecture 303 Variance and Standard Deviation

    Lecture 304 Variance Exercise

    Lecture 305 Bessel's Correction

    Lecture 306 Scaling and Variance

    Lecture 307 Loading CSV in Numpy

    Section 15: Graphs and Plotting

    Lecture 308 Pyplot Basics

    Lecture 309 Styles

    Lecture 310 Configuring Matplotlib

    Lecture 311 More Config Options

    Lecture 312 A Word Length Exercise

    Lecture 313 Word Length Plot Solution First Part

    Lecture 314 Word Length Plot Solution Second Part

    Lecture 315 Creating Bar Charts

    Lecture 316 Creating Pie Charts

    Lecture 317 Pie Chart Exercise Solution

    Lecture 318 Scatter Plots

    Lecture 319 Histograms

    Lecture 320 Multiple Graphs in One Plot

    Lecture 321 Subplots

    Lecture 322 Subplots Exercise Solution

    Lecture 323 3D Plots

    Section 16: Pandas: Python's Equivalent of Spreadsheets

    Lecture 324 Introduction

    Lecture 325 Referencing Cells

    Lecture 326 Loc and Iloc

    Lecture 327 Changing Values in Pandas

    Lecture 328 Pandas Functions

    Lecture 329 Pandas Series

    Lecture 330 Matplot and Pandas

    Lecture 331 Sorting in Pandas

    Lecture 332 Correlations

    Lecture 333 Grouping

    Lecture 334 Grouped Types

    Lecture 335 Group Aggregate Functions

    Lecture 336 Filtering

    Lecture 337 Multiple Groups

    Lecture 338 Plotting Groups

    Lecture 339 Binning

    Lecture 340 A Groupby Exercise

    Lecture 341 Groupby Exercise Solution First Part

    Lecture 342 Groupby Exercise Solution Second Part

    Lecture 343 Zipf's Law Exercise

    Lecture 344 Zipf's Law Exercise Solution

    Section 17: Regression: Fitting and Predicting Curves

    Lecture 345 Introduction to Regression

    Lecture 346 Linear Regression Data

    Lecture 347 Configuring Tick Labels

    Lecture 348 The Equation of a Line

    Lecture 349 Linear Regression with Statsmodels

    Lecture 350 Why Add Constants

    Lecture 351 R Squared

    Lecture 352 Calculating R Squared

    Lecture 353 Train-Test Split

    Lecture 354 Predictions with Linear Regression

    Lecture 355 Linear Regression Exercise

    Lecture 356 Plotting Grapes Exercise Solution

    Lecture 357 Predicting the Weights of Grapes

    Lecture 358 Removing Outliers

    Lecture 359 Multiple Linear Regression

    Lecture 360 A Multiple Linear Regression Model with Scikit-Learn

    Lecture 361 About Polynomial Regression

    Lecture 362 Polynomial Features

    Lecture 363 A Polynomial Regression Model

    Lecture 364 A Surprising Result

    Lecture 365 Binomial Logistic Regression and Causation

    Lecture 366 Categorical Dummy Values

    Lecture 367 The Logistic Equation

    Lecture 368 A Scikit-Learn Logistic Regression Model

    Lecture 369 Multiple Logistic Regression

    Lecture 370 Getting Predictions with Logistic Regression

    Lecture 371 Confusion Matrices

    Lecture 372 Scaling and Normalisation

    Lecture 373 Normalising Split Data

    Lecture 374 Using StandardScaler

    Lecture 375 A Confusion Matrix Exercise

    Lecture 376 Confusion Matrix Exercise Solution, First Part

    Lecture 377 Confusion Matrix Exercise Solution, Second Part

    Section 18: Clustering: Analysing Clustered Data

    Lecture 378 Introducing Clustering

    Lecture 379 K-Means Clustering

    Lecture 380 Centroids and Inertia

    Lecture 381 The Elbow Method

    Lecture 382 K-Means Exercise Solution

    Lecture 383 Exercise Further Analysis

    Lecture 384 The Iris Flower Dataset

    Lecture 385 Loading the Iris Flower Dataset

    Lecture 386 Seaborn Plots

    Lecture 387 K-Means Iris Exercise

    Lecture 388 Iris Exercise Solution

    Lecture 389 Permutations Exercise

    Lecture 390 Permutations Exercise Solution

    Lecture 391 Normalized Mutual Information

    Lecture 392 Dendrograms

    Lecture 393 The Linkage Table

    Lecture 394 Clustering Iris Flower Data

    Lecture 395 Scikit-Learn Agglomerative Clustering

    Lecture 396 Linkage and Affinity

    Lecture 397 Fit, Predict, Transform

    Lecture 398 Nearest Neighbors

    Lecture 399 Spherically Symmmetric Data

    Lecture 400 DBSCAN

    Lecture 401 Determining Epsilon

    Lecture 402 Using DBSCAN

    Lecture 403 DBSCAN Moons Exercise

    Lecture 404 DBSCAN Moons Exercise Solution

    Lecture 405 Silhouette Scores

    Lecture 406 Nearest Neighbors Classification

    Lecture 407 Using KNeighborsClassifier

    Section 19: Naive Bayes: Making Predictions on the Basis of Probabilities

    Lecture 408 Bayes' Theorem

    Lecture 409 Naive Bayes

    Lecture 410 Applying Bayes to Classification

    Lecture 411 An Email Dataset

    Lecture 412 Loading the Email Dataset

    Lecture 413 Counting Words in Emails

    Lecture 414 Listing Common Words

    Lecture 415 The Predictor Matrix

    Lecture 416 Naive Bayes Classifiers

    Lecture 417 Naive Bayes Exercise

    Lecture 418 Naive Bayes Exercise Solution

    Lecture 419 Classifying Irises with Naive Bayes

    Section 20: Decision Trees

    Lecture 420 Introducing Decision Trees

    Lecture 421 Gini Impurity

    Lecture 422 Calculating Gini Impurity

    Lecture 423 Gini Impurity Examples

    Lecture 424 Decision Tree Exercise

    Lecture 425 A Solution to the Decision Tree Exercise

    Lecture 426 Seaborn Iris Plots

    Lecture 427 Plotting Decision Trees

    Section 21: Principal Component Analysis

    Lecture 428 Introducing PCA

    Lecture 429 Data for PCA

    Lecture 430 How PCA Works

    Lecture 431 Transforming Data with PCA

    Lecture 432 Explained Variance Ratios

    Lecture 433 Iris Flower PCA Analysis

    Lecture 434 PCA Components

    Lecture 435 Classifying Irises with PCA

    Lecture 436 PCA Tips

    Lecture 437 PCA Exercise

    Lecture 438 A Solution to the PCA Exercise

    Lecture 439 The MNIST Dataset

    Lecture 440 Fetching MNIST From OpenML

    Lecture 441 Loading MNIST with Keras

    Lecture 442 Character Recognition

    Lecture 443 Configuring Logistic Regression

    Lecture 444 Displaying Images

    Section 22: Artificial Neural Networks (ANNs)

    Lecture 445 An Artificial Neuron

    Lecture 446 Activation Functions

    Lecture 447 Minimising Loss

    Lecture 448 Preparing Iris Data

    Lecture 449 A Basic ANN

    Lecture 450 Dropout, and Tweaking the Network

    Lecture 451 A Neural Net Character Recognition Exercise

    Lecture 452 Preparing the MNIST Data

    Lecture 453 An ANN for Recognising Digits

    Lecture 454 Improving the ANN

    Lecture 455 Comparing Subarrays

    Lecture 456 Displaying Misclassified Images

    Lecture 457 Saving and Loading ANNs

    Lecture 458 Machine Learning Pipelines

    Lecture 459 A Standalone Pretrained Classifier

    Lecture 460 The California Housing Dataset

    Lecture 461 Regression with Neural Networks

    Lecture 462 Improving ANN Regression

    Lecture 463 Analysing the Results

    Lecture 464 Detecting Overfitting

    Section 23: Conclusion

    Lecture 465 Conclusion

    Complete beginners with computer programming,Existing programmers who want to improve their Python knowledge or learn Python,Python programmers who want to learn how to use AI/ML in their programs.