Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Microsoft Dp-203 Certified: Azure Data Engineer Associate

    Posted By: ELK1nG
    Microsoft Dp-203 Certified: Azure Data Engineer Associate

    Microsoft Dp-203 Certified: Azure Data Engineer Associate
    Published 12/2024
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 9.95 GB | Duration: 19h 49m

    Preparing for Azure Data Engineer Certification: DP-203 Data Engineering on Microsoft Azure Exam

    What you'll learn

    This course is ideal for students aspiring to achieve the "Microsoft Certified: Azure Data Engineer Associate" Dp-203 certification.

    It includes comprehensive content aligned to pass DP-203 exam.

    Students will gain hands-on experience in implementing and managing data engineering workloads using Microsoft Azure.

    The course covers key Azure services, including Azure Synapse Analytics, ADF, Azure Data Lake Storage Gen2, Azure Stream Analytics, and Azure Databricks.

    Past Papers and Practice: Access to 500 exam questions to solidify knowledge and prepare for certification.

    Requirements

    Prerequisites:

    Familiarity with any database system and basic proficiency in SQL is good to have.

    A foundational knowledge of data formats is expected. e.g csv etc

    Description

    This course is ideal for students aspiring to achieve the "Microsoft Certified: Azure Data Engineer Associate" certification.It includes comprehensive content aligned with the DP-203 exam.The course objectives focus on the following areas:Design and implement data storage (15–20%)Develop data processing (40–45%)Secure, monitor, and optimize data storage and data processing (30–35%)This Course structure organizes the course into a logical progression while providing a clear breakdown of the covered topics. Here’s is the structured outline of the course sections:1. Introduction and SetupOverview of the course and initial setup.2. Design and Implement Data StorageAzure Data Lake: Understanding and implementing data storage with Azure Data Lake.Azure SQL Server: Designing storage solutions using Azure SQL Server.Cosmos DB: Exploring storage capabilities with Cosmos DB.Azure Synapse Analytics: Building and managing storage in Azure Synapse Analytics.3. Develop Data ProcessingAzure Synapse Spark Pool: Leveraging Spark pools in Azure Synapse for data processing.Azure Data Factory: Developing ETL pipelines and data flows in Azure Data Factory.Azure Databricks: Implementing data processing workflows with Azure Databricks.Azure Event Hubs: Streaming and processing real-time data using Azure Event Hubs.Azure Stream Analytics: Real-time data stream processing with SQL-based queries.4. Secure Your DataAzure Data Lake Security: Implementing security best practices for Azure Data Lake.Azure Synapse Analytics Security: Securing data in Azure Synapse Analytics.Azure Data Factory and Databricks Security: Ensuring secure data workflows in Azure Data Factory and Databricks.4. Monitor and OptimizeAzure Data Lake Storage: Monitoring and optimizing storage performance.Azure Data Factory: Ensuring efficient operations with monitoring tools.Azure Synapse Analytics: Performance tuning and monitoring analytics workloads.Azure Stream Analytics and Cosmos DB: Streamlining data streams and database operations.Data Governance with Microsoft Purview: Managing and governing data using Microsoft Purview.5. Exam PreparationPast Papers and Practice: Access to 500 exam questions to solidify knowledge and prepare for certification.

    Overview

    Section 1: Segment1-Introduction and Setup

    Lecture 1 1.1.Overview-Cloud Computing

    Lecture 2 1.2.Concepts-Introduction to Cloud Computing.mp4

    Lecture 3 1.3.Overview-Microsoft Azure.mp4

    Lecture 4 1.4.Overview-How we are going to approach the Exam.mp4

    Lecture 5 1.5.HandsOn-Create Azure Account.mp4

    Lecture 6 1.6.HandsOn-Azure Portal Overview.mp4

    Lecture 7 1.7.Overview-IMPORTANT-How to Complete the Course

    Lecture 8 Complete Course Files

    Section 2: Segment2-Design and implement data storage-DataLake

    Lecture 9 2.0.Overview-Data Engineering Basics Concepts

    Lecture 10 2.1.Overview of Types of azure Storage Account

    Lecture 11 2.2.HandsOn-Create Azure Storage Account

    Lecture 12 2.3.Overview of DataLake Gen2 Storage Account

    Lecture 13 2.4.HandsOn-Create DataLake Gen2 Storage Account

    Lecture 14 2.5.Different Format Types + HandsOn Uploading Files to Azure Storage

    Lecture 15 Congrats on Completing a Section

    Section 3: Segment3-Design and implement data storage-Azure SQL Server

    Lecture 16 3.1.1.Overview-Azure SQL Database

    Lecture 17 3.1.2.Overview Azure SQL Pricing Tier and Configuration Types

    Lecture 18 3.2.Overview SQL Server Creation on Azure

    Lecture 19 3.3.HandsOn SQL Server Creation

    Lecture 20 3.4.HandsOn-connecting with SQL Server Using SSMS

    Lecture 21 3.5.Installing Azure Data Studio

    Lecture 22 3.6.1.HandsON - T-SQL Select Statement Basics

    Lecture 23 3.6.2.HandsOn T-SQL Multiple Conditioning using Where Clause

    Lecture 24 3.6.3.HandsOn T-SQL Order By Clause

    Lecture 25 3.6.4.HandsOn T-SQL Aggregate Functions

    Lecture 26 3.6.5.HandsOn T-SQL Group By Clause

    Lecture 27 3.6.6.HandsOn T-SQL Partition By Statement

    Lecture 28 3.6.7.HandsOn T-SQL LEAD and LAG Statement

    Lecture 29 3.6.8.HandsOn T-SQL Common Table Expression using WITH Clause

    Lecture 30 3.6.9.HandsOn T-SQL CASE Statement

    Lecture 31 Congrats on Completing a Section

    Section 4: Segment4-Design and implement data storage-CosmosDB

    Lecture 32 4.1.1.Overview-Cosmos DB

    Lecture 33 4.1.2.Concepts-CosmosDB use Cases

    Lecture 34 4.1.3.Concepts-CosmosDB as a Solution

    Lecture 35 4.2.1.Overview-Cosmos DB Pricing

    Lecture 36 4.2.2.Concepts-Cosmos DB Throughput Models

    Lecture 37 4.3.1.Overview-Cosmos DB APIs

    Lecture 38 4.3.2.Concepts-Data Modelling and their APIs

    Lecture 39 4.3.3.Concepts-APIs Use-cases for Cosmos DB

    Lecture 40 4.4.1.HnadsOn-Cosmos DB Account Creation

    Lecture 41 4.5.1.Concepts-Databases, containers, and items in Cosmos DB

    Lecture 42 4.5.2.HandsOn-Create Database inside Cosmos DB account

    Lecture 43 4.5.3.HandsOn-Create a Container inside Cosmos DB

    Lecture 44 4.5.4.HandsOn-Create Items inside Cosmos DB

    Lecture 45 4.6.1.Concepts-Physical Partitions in Cosmos DB

    Lecture 46 4.6.2.Concepts-Logical Partitions in Cosmos DB

    Lecture 47 4.7.1.Concepts-Consistency Levels in Cosmos DB

    Lecture 48 4.7.2.HandsOn-Set Consistency for Cosmos DB

    Lecture 49 4.8.1.HandsOn-Scaling a Cosmos DB across the Globe

    Lecture 50 Congrats on Completing a Section

    Section 5: Segment5-Design and implement data storage-Azure Synapse Analytics

    Lecture 51 5.1.Overview-Azure Synapse Analytics basic Concepts

    Lecture 52 5.2.Overview-Azure Synapse Components

    Lecture 53 5.3.Overview-Azure Synapse Compute Power

    Lecture 54 5.5.Concept-SQL Database vs SQL Data Warehouse

    Lecture 55 5.6.Overview-Serverless SQL Pools

    Lecture 56 5.7.Overview-Synapse SQL Underlying Architecture

    Lecture 57 5.9.HandsOn-Create Synapse Workspace

    Lecture 58 5.10.1.HandsOn-Query Csv from Data Lake

    Lecture 59 5.10.2.HandsOn-Setting Role Assignment inside Data lake for Reading Data

    Lecture 60 5.11.Overview-Dadicated SQL Pool

    Lecture 61 5.12.HandsOn-Creating and Pausing Dedicated SQL Pool

    Lecture 62 5.13.0.Overview-Data Loading Methods

    Lecture 63 5.13.1.HandsOn-External Table Serverless SQL CSV format-part1

    Lecture 64 5.13.2.HandsOn- External Table Serverless SQL csv format-part2

    Lecture 65 5.13.3.HandsOn- External Table Dedicated SQL csv format-part3

    Lecture 66 5.13.4.HandsOn-External table parquet serverless&dedicated

    Lecture 67 5.13.5.HandOn-Copying Data using Polybase

    Lecture 68 5.13.6.HandsOn-Copying Data using Copy into Statement

    Lecture 69 5.13.7.HandsOn-Copying Data with Auto Schema Detection using Copy into Statement

    Lecture 70 5.13.8.HandsOn-Copying Data using Pipelines

    Lecture 71 5.14.Concepts-Transverse Files and Folders for Hadoop and Native file system

    Lecture 72 5.15.1.Overview-OLAP and OLTP systems

    Lecture 73 5.15.2.Overview-Fact and Dimension Tables

    Lecture 74 5.15.3.Overview-Star and Snow Flake Schema Design

    Lecture 75 5.15.4.0.HandsOn-Transfer Data from SQL to Synapse SQL dedicated pool

    Lecture 76 5.15.4.1.HandsOn-Transfer Data from SQL to Synapse SQL dedicated pool

    Lecture 77 5.16.1.Concepts-Table or Data Distribution Methods

    Lecture 78 5.16.2.Concepts-Distribution Selection

    Lecture 79 5.16.3.Concepts-Hash and Replicated Distribution

    Lecture 80 5.16.4.HandsOn-Creating Table Distribution in Dedicated SQL Pool

    Lecture 81 5.16.5.HandsON-Query Performance and Monitor Tab inside Synapse

    Lecture 82 5.16.6.Concepts-Slowly Changing Dimension Types

    Lecture 83 5.16.7.0.HandsOn-Business Key for Creation for Dimension tables

    Lecture 84 5.16.7.1.HandsON-Business Key for Creation for Dimension tables

    Lecture 85 5.17.1.Overview-Use of Index on tables

    Lecture 86 5.17.2.Concepts-Partition and Partition Switching

    Lecture 87 5.18.0.HandsOn-Create a Restore Point and Restoring a Dedicated SQL pool

    Lecture 88 5.19.0.Overview-Database Templates for Synapse Analytics

    Lecture 89 Congrats on Completing a Section

    Section 6: Segment6-Develop data processing-Azure Synapse Spark Pool

    Lecture 90 6.1.0.Overview-History of Big Data Processing

    Lecture 91 6.1.1.Overview-Benifits of Apache Spark

    Lecture 92 6.1.2.Overview-Spark Underlying Architecture

    Lecture 93 6.2.1.Concepts-Spark Pools inside Azure Synapse

    Lecture 94 6.2.2.HandsOn-Creating Spark Pool in Synapse

    Lecture 95 6.3.1.HandsOn-Creating Dataframe Using Pyhton

    Lecture 96 6.3.2.HandsON-Read Data From Data Lake Using Python

    Lecture 97 6.3.3.HandOn-Working with Loading function using pyspark

    Lecture 98 6.3.4.HandsOn-Writing Data to Dedicated SQL Using Sparkpools

    Lecture 99 Congrats on Completing a Section

    Section 7: Segment7-Develop data processing-Azure Data Factory

    Lecture 100 7.1.Overview-Azure Data Factory

    Lecture 101 7.2.Overview-ETL Extract Transform and Load

    Lecture 102 7.3.HandsOn-Create Azure Data Factory on Azure

    Lecture 103 7.4.0.HnadsOn-Copy data activity from DataLake to Blob Storage

    Lecture 104 7.4.1.HandsOn-Copy Data Activity for parquet to json conversion

    Lecture 105 7.4.2.HandsOn-Create Pipeline csv to json

    Lecture 106 7.5.0.Overview-Pipelines and Mapping Data Flows in ADF

    Lecture 107 7.5.1.HandOn-Mapping Data Flow- SQL to Synapse SQL Fact Table

    Lecture 108 7.5.2.HandOn-Mapping Data Flow- SQL to Synapse SQL Dimension Table

    Lecture 109 7.5.3.HandOn-Mapping Data Flow- SQL to Synapse SQL Store Procedure Activity

    Lecture 110 7.5.4.HandOn-Mapping Data Flow- SQL to Synapse SQL Derived Column Activity

    Lecture 111 7.5.5.HandOn-Mapping Data Flow- SQL to Synapse SQL Business Key Activity

    Lecture 112 7.5.6.Overview-Mapping Data Flow- Data Debug Feature

    Lecture 113 7.5.7.Overview-Mapping Data Flow- Sink Types Available

    Lecture 114 7.5.8.HandOn-Mapping Data Flow Json Data(Array and Object)

    Lecture 115 7.6.0.Concepts-Integration Runtimes

    Lecture 116 7.6.1.HandOn-Installing Self hosted IR

    Lecture 117 7.6.2.HandOn-Self Hosted IR Copy Data from PC to DataLake

    Lecture 118 7.7.0.Pipeline fail senerio

    Lecture 119 7.8.0.Overview-Trigger Types in ADF

    Lecture 120 7.9.0.Code Representation of ADF components inside GIT

    Lecture 121 7.9.1.What is GIT How to version Control ADF

    Lecture 122 7.9.2.HandsOn-Configuring GIT with ADF

    Lecture 123 7.9.3.HandOn-How to merge changes in Business and create Pull request in ADF

    Lecture 124 Congrats on Completing a Section

    Section 8: Segment8-Develop data processing-Azure DataBricks

    Lecture 125 8.1.0.Overview-Introduction to Databricks

    Lecture 126 8.1.1.Overview-Benefits of DataBricks

    Lecture 127 8.1.2.Concepts-Azure Databricks

    Lecture 128 8.2.0.HandsOn-Create Databricks Workspace

    Lecture 129 8.2.1.Concepts-Compute Cluster Types inside Azure Databricsk

    Lecture 130 8.2.2.HandsOn-Create Compute inside DataBricks Workspace

    Lecture 131 8.2.3.HandsOn-Read data inside DBFS

    Lecture 132 8.2.4.HandsOn-Read Data from ADLS Account

    Lecture 133 8.2.5.HandsOn-Visulizations inside Notebook in DataBricks

    Lecture 134 8.3.0.HandsOn-Processing Json Data

    Lecture 135 8.3.1.HandsOn-Saving to Databricks as Table

    Lecture 136 8.3.2.HandsOn-Saving Table inside DataLake

    Lecture 137 8.4.0.HandsOn-Reading Stream inside Databricks

    Lecture 138 8.4.1.HnadsOn-Copying Stream inside Databricks Table

    Lecture 139 8.5.0.HandsOn-Writing Data to Synapse SQL

    Lecture 140 8.5.1.HandsOn-Reading data From Synapse Dedicated SQL pool

    Lecture 141 8.6.0.HandsOn-History of Delta Tables

    Lecture 142 8.7.0.HandsOn-Scheduling a Job

    Lecture 143 8.8.0.HandsON-Creation of EventHub namespace resource

    Lecture 144 8.8.1.HandsON-Creation of EventHub

    Lecture 145 8.8.2.HandsON-Installing Required Libraries

    Lecture 146 8.8.3.HandsON-Starting EventHub stream inside DataBricks

    Lecture 147 8.8.4.HandsON-Transforming Event Stream inside DataBricks

    Lecture 148 8.9.0.HandsON-Setup to Run Databricks Notebook from ADF

    Lecture 149 8.9.1.HandsON-Running a Databricks notebook from ADF Pipeline

    Lecture 150 8.10.HandsOn-Delete Unused Resources

    Lecture 151 Congrats on Completing a Section

    Section 9: Segment9-Develop data processing-Azure Event Hubs

    Lecture 152 9.1.Processing Batch Data in Azure

    Lecture 153 9.2.Processing Stream Data in Azure

    Lecture 154 9.2.1.Overview-Azure Event Hubs

    Lecture 155 9.2.2.Concepts-Partitions in Event Hubs

    Lecture 156 9.3.1.HandsOn-Create EventHub NameSpace

    Lecture 157 9.3.2.HandsOn-Create EventHub inside EventHub namespace

    Lecture 158 9.3.3.HandsOn-Ingesting Data to EventHub

    Lecture 159 9.3.4.HandsOn-Capture Data Feature in Event Hub

    Section 10: Segment10-Develop data processing-Stream Analytics

    Lecture 160 10.1.1.Overview-Azure Stream Analytics

    Lecture 161 10.1.2.Overview-Stream Analytics Costing

    Lecture 162 10.1.3.HandsOn-Create Stream Analytics Workspace

    Lecture 163 10.2.1.HandsOn-Define Input in Stream Analytics

    Lecture 164 10.2.2.1.HandsOn-Create Synapse SQL table

    Lecture 165 10.2.2.2.HandsOn-Create a Table inside Synapse SQL

    Lecture 166 10.2.2.3.HandsOn-Set the Staging location inside Stream Analytics

    Lecture 167 10.2.2.4.HandsOn-Define an Output as Synapse SQL pool in Stream Analytics

    Lecture 168 10.2.2.5.HandsOn-Create a Query and Start Streaming Job

    Lecture 169 10.2.3.HandsOn-Fetch Data from ADSL to synapse SQL using Stream Analytics

    Lecture 170 10.2.4.1.HandsOn-Sending Logs to EventHub

    Lecture 171 10.2.4.2.HandsOn-Define an Input inside Stream Analytics

    Lecture 172 10.2.4.3.HandsOn-Definie an output for Stream Analytics

    Lecture 173 10.2.4.4.HandsOn-Formulate a Query based on your DataStructure

    Lecture 174 10.2.5.HandsOn-Monitoring Errors for Stream Analytics

    Lecture 175 10.2.6.1.Overview-Builtin Window functions in Stream Analytics

    Lecture 176 10.2.6.2.Overview-Tumbling and Hopping Window in Stream Analytics

    Lecture 177 10.2.6.3.Overview-Sliding,Session and Snapshot Window functions

    Lecture 178 10.2.6.4.HandsOn-Setup for Tumbling Window in Stream Analytics

    Lecture 179 10.2.7.HandsOn-Using Reference Data as Input in Stream Analytics

    Lecture 180 Congrats on Completing Section 9 and 10

    Section 11: Segment11-Secure-Azure Data Lake Security Aspects

    Lecture 181 11.1.0.HandsOn-Installing Azure Data Explorer Client tool

    Lecture 182 11.1.1.Overview-Security Aspects of Azure Data Lake Gen2

    Lecture 183 11.1.2.HandsOn-Connecting Storage Account to Data Explorer using Account KEY

    Lecture 184 11.1.3.HandsOn-Connecting Storage Account Through SAS token

    Lecture 185 11.2.0.Overview-Authentication and Authorization Process

    Lecture 186 11.2.1.Overview-Microsoft Entra ID

    Lecture 187 11.2.2.HandsON-Create Microsoft Entra ID User

    Lecture 188 11.3.1.Overview-RBAC Roles

    Lecture 189 11.3.2.HandsOn-Assigning RBAC to a User

    Lecture 190 11.3.3.HandsOn-Login Using New Entra ID USER and Assigning RBAC roles

    Lecture 191 11.4.1.Overview-Access Control List (ACLs) Permission Types

    Lecture 192 11.4.2.HandsOn-Implement ACLs inside Storage Accounts

    Lecture 193 11.5.0.Concepts-Securing your Storage Using Service Endpoint

    Lecture 194 11.5.1.HandsOn-Creating a Virtual Machine for Virtual Network

    Lecture 195 11.5.2.HandsOn-Running a Virtual Machine for Service EndPoint

    Lecture 196 11.5.3.HandsOn-Setup to Access Storage Using Service Endpoint

    Section 12: Segment12-Azure Synapse Analytics Security Aspects

    Lecture 197 12.1.0.Overview-Azure Synapse Security Encryption Types

    Lecture 198 12.1.1.Overview-Transparent Data Encryption for Synapse Dedicated SQL Pools

    Lecture 199 12.1.2.HandsOn-Creating a Key Vault

    Lecture 200 12.1.3.HandsOn-Configuring a Key Vault and Creating a Key

    Lecture 201 12.1.4.HandsOn-Enabling a Double Encryption for Synapse Workspace

    Lecture 202 12.2.1.Overview-Microsoft Entra ID for Synapse Analytics

    Lecture 203 12.2.2.HandsOn-Setting Entra ID user as Admin User for Synapse Analytics

    Lecture 204 12.2.3.HandsOn-Given Microsoft Entra ID user permission dedicated Sql pool

    Lecture 205 12.3.1.Overview-Managed Identities on Azure

    Lecture 206 12.3.2.HandsOn-Creating External Table using Managed Identities Synapse

    Lecture 207 12.3.3.HandsOn-Data Discovery and Classification Synapse SQL pool

    Lecture 208 12.4.1.HandsOn-Column Level Security Synapse SQL

    Lecture 209 12.4.2.HandsOn-Dynamic Data Masking inside Synapse SQL

    Lecture 210 12.4.3.HandsOn-Row Level Security Synapse SQL

    Section 13: Segment13-DataFactory and Databricks Security Aspects

    Lecture 211 13.1.1.HandsOn-Encrypting Azure Data Factory

    Lecture 212 13.2.1.Overview-Encryption using secrete scope in DataBricks

    Lecture 213 13.2.2.HandsOn-App Registration inside Microsoft EntraID and Generating a Secret

    Lecture 214 13.2.3.HandsOn-Save the secrete inside a Key Vault

    Lecture 215 13.2.4.HandsOn-Accessing Vault Using Access Policies for Databricks

    Lecture 216 13.2.5.HandsOn-Creating Secrete Scope inside Databricks

    Lecture 217 13.2.6.HandsOn-Implementing Scoped Credentials inside Databricks Notebook

    Lecture 218 13.2.7.HandsOn-Running a Code

    Lecture 219 Congrats on Completing Security Sections

    Section 14: Segment14-Monitor and Optimize-Data Lake Storage

    Lecture 220 14.1.1.Concepts-Data Lake Storage Practices

    Lecture 221 14.1.2.Concepts-Data Lake Access Tiers

    Lecture 222 14.1.3.HandsOn-Selecting Default Tier for Blobs

    Lecture 223 14.1.4.HandsOn-Changing Tier at file level for blobs

    Lecture 224 14.1.5.HandsOn-Life Cycle Management Rules for blobs

    Section 15: Segment15-Monitor and Optimize-Azure Data Factory

    Lecture 225 15.1.1.Overview-Azure Data Factory IR and Debugging

    Lecture 226 15.1.2.HandsOn-Anotations in ADF

    Lecture 227 15.1.3.HandsOn-Monitor Service in Azure

    Lecture 228 15.1.4.HandsOn-Creating Alert for Data Factory

    Lecture 229 15.1.5.HandsOn-Monitor Data Factory Logs through Log Analytics Workspace

    Section 16: Segment16-Monitor and Optimize-Synapse Analytics

    Lecture 230 16.1.1.Overview-DMV Commands

    Lecture 231 16.1.2.0.Overview-Work Load Management in Synapse

    Lecture 232 16.1.2.1.HandsOn-WorkLoad Management in dedicated SQL pool

    Lecture 233 16.1.3.0.Concepts-Result Set Caching in Synapse SQL

    Lecture 234 16.1.3.1.HandsOn-Turning On Result Set Caching

    Lecture 235 16.1.4.HandsOn-Checking Data Skewness

    Lecture 236 16.1.5.HandsOn-Monitoring of Synapse Workspace

    Lecture 237 16.1.6.HandsOn-Connecting Synapse with Log Analytics

    Lecture 238 16.1.7.HandsOn-Deleting Diagnostic Settings

    Section 17: Segment17-Monitor and Optimize-Stream Analytics, Cosmos DB

    Lecture 239 17.1.1.Overview-Streaming Units and Monitoring for Stream Analytics

    Lecture 240 17.1.2.Overview-Event Partitioning and Parallel Processing in Stream Analytics

    Lecture 241 17.1.3.Concepts-time handling in Azure Stream Analytics

    Lecture 242 17.1.4.HandsOn-Monitor Stream Analytics Job

    Lecture 243 17.2.1.HandsOn-Monitor Cosmos DB through Matrices

    Lecture 244 17.2.2.HandsOn-Setup Log Analytics with Cosmos DB

    Section 18: Segment18-Monitor and Optimize-Data Governance with Microsoft Purview

    Lecture 245 18.1.1.Concepts-Microsoft Purview Data Governance and Management

    Lecture 246 18.1.2.HandsOn-Creating Microsoft Purview Account

    Lecture 247 18.1.3.HandsOn-Scan Data Lake Assets with Purview

    Lecture 248 18.1.4.HandsOn-Scanning Synapse SQL pool using Purview

    Lecture 249 18.1.5.HandsOn-Browsing inside Microsoft Purview

    Lecture 250 18.1.6.HandsOn-Connecting DataFactory with Purview

    Lecture 251 18.1.7.HandsOn-Removing Assets

    Lecture 252 Congrats on Completing Monitor and Optimize Sections

    Section 19: Segment19-Practice Papers-500 Questions

    Lecture 253 Overview-Exam on Microsoft for Dp-203

    If you want to boost your career in the field of data engineering.,Professional who will like to transform yourself into a skilled data engineer, this course is for you.,Mastering DP-203 empowers you to build analytical solutions using Microsoft Azure's data platform technologies, paving the way for a successful career in data engineering.,This course is tailored for data professionals, and BI and Data Analytics specialists aiming to deepen their knowledge of data engineering.