Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Master Pandas For Data Analysis And Visualisation

    Posted By: ELK1nG
    Master Pandas For Data Analysis And Visualisation

    Master Pandas For Data Analysis And Visualisation
    Published 7/2025
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 29.01 GB | Duration: 44h 46m

    Data Analysis & Visualisation in Pandas, Pandas Plotting Lib, Numpy, Python, Streamlit, Problem Solving & 5 EDA Projects

    What you'll learn

    Basic, Intermediate & Object Oriented Programming in Python

    Basic & Intermediate of Numpy

    Basic to Advanced of Pandas Series

    Basic to Advanced of Pandas DataFrame

    Indexing, Slicing & Sorting a Pandas DataFrame

    Joining, Merging, Concatenating, Updating & Combining a Pandas DataFrame

    Filtering, Group by and Aggregation in Pandas DataFrame

    String Operations in Pandas DataFrame

    Multi-Indexing in Pandas DataFrame

    Pivot & Reshaping a Pandas DataFrame

    Working with Datetime & Timeseries in Pandas DataFrame

    Resampling & Rolling

    Styling a Pandas DataFrame

    Options & Settings in Pandas DataFrame

    Plotting & Visualisation of Pandas DataFrame

    Data Cleaning & Preprocessing in Pandas DataFrame

    Pandas Plotting Library

    Streamlit Basics

    Streamlit Dashboard

    EDA projects on Kaggle Dataset

    Requirements

    No prior programming knowledge is required

    You need a decent computer with a decent internet connection.

    A very very important prerequisite: You are seriously willing to write codes with me.

    A very very important prerequisite: You are seriously willing to learn data analysis and visualisation using Pandas only and do multiple EDA projects.

    Description

    Welcome to the course "Master Pandas for Data Analysis and Visualisation". The biggest and the best course on Pandas for Data Analysis and Visualisation. This is the only course based on Pandas Problem Solving & multiple EDA Projects.First you will learn Python from scratch to object oriented Python. Then you will learn Numpy from very basic to intermediate level. After that you will learn Pandas Series from very beginning to advance level and then you will learn Pandas DataFrame in Details.In Pandas DataFrame, you will learning everything from basic to advanced. You will learn how to create a Pandas DataFrame and run basic operations. You will learn indexing, slicing & sorting a Pandas DataFrame. You will learn joining, merging, concatenating, updating, combining, filtering, grouping by, aggregation, string operations, multiindexing, pivot & reshaping, datetime & series, resampling & rolling, styling, options & settings, plotting & visualisation and data cleaning & preprocessing.You will also learn Solving Pandas Problems, Feature Engineering & EDA.Finally, you will do multiple EDA projects using only Pandas & Pandas Plotting Library.And at the end, you will learn to develop a basic dashboard using Streamlit & PandasI’ve already added about 45hrs of contents. There will be more than 10 hours of contents soon. So, what are you waiting for? Enrol into the course and suggest your favourite EDA projects to add into the course.You will learn through developing projects and writing codes together. We will together develop about 5 projects. I've already added 5 projects and about 2 more projects I will add based on student's choice.I promise to give you something which no instructor has ever given in any course.

    Overview

    Section 1: Introduction

    Lecture 1 Introduction

    Section 2: Installation and Configuration

    Lecture 2 Installing & configuring Anaconda

    Lecture 3 Online Compiler & Google CoLab

    Lecture 4 Installing PyCharm

    Section 3: Python

    Lecture 5 01. Welcome to my Universe

    Lecture 6 02. Variables & Value assignments

    Lecture 7 03. Python - Data types & Operators

    Lecture 8 04. Python - Operators

    Lecture 9 05. Python Statements - if, else

    Lecture 10 06. Solution of Homework on Python Statements

    Lecture 11 07. Python For Loop

    Lecture 12 08. Python - While Loop

    Lecture 13 09. Python List & Array - Part 1

    Lecture 14 10. Python Function & Method

    Lecture 15 11. Python List & Array part 2

    Lecture 16 12. Python List & Array - Part 3

    Lecture 17 13. Python Tuple, Set and Dictionary

    Lecture 18 14. Python String

    Lecture 19 15. Python Dates & Math Modules

    Lecture 20 16. Custom type in Python

    Lecture 21 17. Class, Object, Object properties, Constructor and methods

    Lecture 22 18. Python Scope, Private fields and methods

    Lecture 23 19. Python Inheritance

    Lecture 24 20. Python Polymorphism & Abstraction

    Lecture 25 21. Python Iterator

    Lecture 26 22. Python Lambda

    Lecture 27 23. Python Files

    Lecture 28 24. Python Try Except

    Section 4: Coding exercises and Problem solving on Python

    Section 5: Numpy

    Lecture 29 01. Creating Numpy arrays

    Lecture 30 02. Numpy Array Attributes & Functions

    Lecture 31 03. Indexing and slicing Numpy array

    Lecture 32 04. Numpy Copy & View

    Lecture 33 05. Reshape, Resize, Ravel & Flatten

    Lecture 34 06. Arithmetic Operations & Aggregations

    Section 6: Coding exercises and Problem solving on Numpy

    Section 7: Pandas Series

    Lecture 35 Pandas Series - Create a basic Pandas Series

    Lecture 36 Pandas Series - Get, Show, Add and Update a Series

    Lecture 37 Series - sample() info(), describe(), head(), tail(), first(), last(), take()

    Lecture 38 Pandas Series - Data types in Pandas Series

    Lecture 39 Pandas Series - Python functions in use

    Lecture 40 Pandas Series - nlargest(), nsmallest(), keys() and items()

    Lecture 41 Pandas Series - unique(), nunique(), duplicated() and item()

    Lecture 42 Pandas Series - Important Attributes

    Lecture 43 Pandas Series - Reading CSV files

    Lecture 44 Pandas Series - Important Parameters

    Lecture 45 Pandas Series - Get and Slice using [] and .get() method

    Lecture 46 Pandas Series - Get and Slice using .loc[] and .iloc[]

    Lecture 47 Pandas Series - .index, .reindex() and .reset_index()

    Lecture 48 Pandas Series - Sorting using sort_values()

    Lecture 49 Pandas Series - Sorting using sort_index()

    Lecture 50 Pandas Series - add(), sub(), mul(), div()

    Lecture 51 Pandas Series - abs(), round(), ceil(), floor()

    Lecture 52 Series - max(), min(), argmax(), argmin() mean(), median(), sum(), std(), var()

    Lecture 53 Pandas Series - Filtering using comparison operators and the filter() method

    Lecture 54 Pandas Series - fillna(), drop(), dropna(), drop_duplicates()

    Lecture 55 Pandas Series - isna(), isnull(), notna(), notnull()

    Lecture 56 Pandas Series - The where(), mask(), between() and apply() method

    Lecture 57 Pandas Series - The replace() method

    Lecture 58 Pandas Series - The groupby() method

    Lecture 59 Pandas Series - The agg() & aggregate() method

    Section 8: Coding exercises and Problem solving on Python

    Section 9: Pandas DataFrame

    Lecture 60 Pandas DataFrame - Creating a basic Pandas DataFrame

    Lecture 61 Pandas DataFrame - Get, Show, Add and Update Pandas DataFrame

    Lecture 62 DataFrame - sample() info(), describe(), head(), tail(), first(), last(), take()

    Lecture 63 Pandas DataFrame - nlargest(), nsmallest()

    Lecture 64 Pandas DataFrame - unique(), nunique() & duplicated()

    Lecture 65 Pandas DataFrame - Data types in Pandas DataFrame

    Lecture 66 Pandas DataFrame - Python functions in use

    Lecture 67 Pandas DataFrame - count() & value_counts()

    Lecture 68 Reading CSV, Excel, JSON & TXT files

    Lecture 69 Pandas DataFrame - Playing with Attributes

    Lecture 70 Pandas DataFrame - Important Parameters

    Lecture 71 Pandas DataFrame - add(), sub(), mul(), div(), mod()

    Lecture 72 Pandas DataFrame - pow(), abs(), round(), ceil, floor, square, sqrt

    Lecture 73 Pandas DataFrame - min(), max(), sum(), mean(), median(), std(), var()

    Lecture 74 Pandas DataFrame - dot(), prod(), cumsum(), corr(), cov()

    Section 10: Coding Exercises & Problem Solving

    Section 11: Pandas DataFrame - indexing, slicing & sorting

    Lecture 75 Pandas DataFrame - set_index() and reset_index(), .index, .index.names and more

    Lecture 76 DataFrame - Get and Slice using [], .get(), .loc[] and .iloc[], .at[], .iat[]

    Lecture 77 Pandas DataFrame - [] vs .get() vs .loc[] vs .iloc[] vs .at[] vs .iat[]

    Lecture 78 Pandas DataFrame - sort_values()

    Lecture 79 Pandas DataFrame - sort_index()

    Section 12: Coding Exercises & Problem Solving

    Section 13: Pandas DataFrame - Joining, Merging, Concatenating and Combining

    Lecture 80 Pandas DataFrame - The join() & merge() method

    Lecture 81 Pandas DataFrame - The update(), concat() & combine() method

    Section 14: Pandas DataFrame - Filtering Pandas DataFrame

    Lecture 82 Pandas DataFrame - Filtering using comparison and logical operators

    Lecture 83 Pandas DataFrame - The filter() method

    Lecture 84 DataFrame - isna(), notna(), fillna(), dropna(), drop(), drop_duplicates()

    Lecture 85 Pandas DataFrame - The where(), mask(), between() and apply() method

    Lecture 86 Pandas DataFrame - The query() method

    Lecture 87 Pandas DataFrame - The replace() & map() method

    Section 15: Coding Exercises & Problem Solving

    Section 16: Pandas DataFrame - GroupBy & Aggregation

    Lecture 88 Pandas Group by - Basics of Grouping by

    Lecture 89 Pandas Group by - .groups, .ngroups, .indices and .get_group()

    Lecture 90 Pandas Group by - Methods in use

    Lecture 91 Pandas Group by - Basic aggregation operations

    Lecture 92 Pandas Group by - Group by multiple columns

    Lecture 93 Pandas Group by - Looping through the groupby object

    Lecture 94 Pandas Group by - Multiple aggregations

    Lecture 95 Pandas Group by - Using the .filter() method on groupby object

    Lecture 96 Pandas Group by - Using the .pipe() method on groupby object

    Lecture 97 Pandas Group by - Using the .transform() method on groupby object

    Section 17: Pandas - String methods & working with text data

    Lecture 98 Pandas - Python string methods

    Lecture 99 Pandas - lower(), upper(), capitalize(), title() and swapcase() methods

    Lecture 100 Pandas - find(), rfind(), findall(), index(), rindex() & count() methods

    Lecture 101 Pandas - contains(), startswith(), endswith(), match() and fullmatch() methods

    Lecture 102 Pandas - isalpha(), isdigit(), isalnum(), islower(), isupper() and more …

    Lecture 103 Pandas - len(), strip(), rstrip(), lstrip() methods

    Lecture 104 Pandas - str.pad(), str.center(), str.rjust() and str.ljust() methods

    Lecture 105 Pandas - split(), rsplit(), partition(), and rpartition() methods

    Lecture 106 Pandas - More on the .split() method

    Lecture 107 Pandas - str.replace() method

    Lecture 108 Pandas - str.cat() method

    Lecture 109 Pandas - str.slice() and str.slice_replace() methods

    Section 18: Coding Exercises & Problem Solving

    Section 19: MultiIndexing in Pandas

    Lecture 110 Pandas - Creating MultiIndex Series

    Lecture 111 Pandas - Creating MultiIndex DataFrame

    Lecture 112 Pandas - Working with MultiIndex both on Rows & Columns

    Lecture 113 Pandas - Working with MultiIndex "levels" on Rows

    Lecture 114 Pandas - Working with MultiIndex "levels" on Columns

    Lecture 115 Pandas - MultiIndex and Cross Section - .xs()

    Lecture 116 Pandas - Sorting MultiIndex DataFrame

    Lecture 117 Pandas - Slicing MultiIndex DataFrame

    Section 20: Pandas DataFrame - Pivot & Reshaping

    Lecture 118 Pivot & Reshape Pandas DataFrame using the .pivot() method

    Lecture 119 Pivot & Reshape Pandas DataFrame - the .pivot_table() method

    Lecture 120 Pivot & Reshaping Pandas DataFrame - .stack() & .unstack() methods

    Lecture 121 Pivot & Reshape Pandas DataFrame - the unstack() method

    Lecture 122 Pivot & Reshape Pandas DataFrame - the melt() method

    Lecture 123 Pivot & Reshape Pandas DataFrame - transpose() & wide_to_long() methods

    Section 21: Working with Pandas DateTime & Timeseries

    Lecture 124 Pandas Datetime - Working with Python datetime

    Lecture 125 Pandas Datetime - Working with Timestamp() object

    Lecture 126 Pandas Datetime - pd.to_datetime() method - Part 1

    Lecture 127 Pandas Datetime - pd.to_datetime() method - Part 2

    Lecture 128 Pandas Datetime - Working with pd.date_range() method Part 1

    Lecture 129 Pandas Datetime - Working with pd.date_range() method Part 2

    Lecture 130 Pandas Datetime - Working with pd.date_range() method Part 3

    Lecture 131 Pandas Datetime - Working with pd.date_range() method Part 4

    Lecture 132 Pandas Datetime - Working with pd.date_range() method Part 5

    Lecture 133 Pandas Datetime - Working with pd.date_range() method Part 6

    Lecture 134 Pandas Datetime - Working with the DatetimeIndex object

    Section 22: Coding Exercises & Problem Solving

    Section 23: Pandas Grouper, Grouping, Resampling & Rolling

    Lecture 135 Pandas - Rolling and Aggregation

    Lecture 136 Pandas Group by & Grouper object

    Lecture 137 Pandas Groupby & Resample

    Section 24: Pandas - The Styler Object & Styling DataFrame

    Lecture 138 Pandas Styling - style.applymap(), style.map() & style.apply() methods

    Lecture 139 Pandas Styling - Specifying axis & subsets

    Lecture 140 Pandas Styling - style.format()

    Lecture 141 Pandas Styling - Built in Styles

    Lecture 142 Pandas Styling - set_properties() method

    Lecture 143 Pandas Styling - bar() & set_caption() methods

    Lecture 144 Pandas Styling - style.background_gradient()

    Section 25: Pandas DataFrame - Options & Settings

    Lecture 145 Pandas Options & Settings - max_rows, min_rows & max_columns

    Lecture 146 Pandas Options & Settings - get, set, reset & describe option

    Lecture 147 Pandas Options & Settings - max_info_columns, max_info_rows & max_colwidth

    Lecture 148 Pandas Options & Settings - large_repr, colheader_justify, multi_sparse

    Lecture 149 Pandas Options & Settings - float_format, precision & chop_threshold

    Section 26: Pandas - Plotting & Visualisations

    Lecture 150 Pandas Plotting & Visualisation - Using .plot() method

    Lecture 151 Pandas Plotting & Visualisation - Using .plot.bar() method

    Lecture 152 Pandas Visualisation - Using .plot.line, .plot.area() & .plot.scatter() methods

    Lecture 153 Pandas Plotting and Visualization - KDE Plotting

    Lecture 154 Pandas Plotting and Visualization - Histogram Plotting

    Lecture 155 Pandas Plotting and Visualization - Hexbin Plotting

    Lecture 156 Pandas Plotting and Visualization - Pie Plotting

    Section 27: Pandas - Data Cleaning and Preprocessing

    Lecture 157 Pandas - Data Cleaning - Part 1

    Lecture 158 Pandas - Data Cleaning - Part 2

    Lecture 159 Pandas - Data Cleaning - Part 3

    Lecture 160 Pandas - Data Cleaning - Part 4

    Lecture 161 Pandas - Data Cleaning - Part 5

    Section 28: Solve 101 Pandas Problems

    Lecture 162 Solving Pandas Problems - from 1 to 13

    Lecture 163 Solving Pandas Problems - from 14 to 19

    Lecture 164 Solving Pandas Problems - from 19 to 25

    Lecture 165 Solving Pandas Problems - from 26 to 30

    Lecture 166 Solving Pandas Problems - from 31 to 32

    Lecture 167 Solving Pandas Problems - from 33 to 37

    Lecture 168 Solving Pandas Problems - from 38 to 43

    Lecture 169 Solving Pandas Problems - from 44 to 50

    Section 29: Pandas EDA - Exploratory Data Analysis

    Lecture 170 What is EDA & Why Do We Need It?

    Lecture 171 Types of Data in Data Analysis

    Lecture 172 Univariate, Bivariate & Multivariate Analysis in Practice

    Lecture 173 Type of Graphs & Charts used on EDA

    Section 30: Feature Engineering in Data Analysis, Data Science & Machine Learning

    Lecture 174 Feature Engineering in Data Analysis, Data Science & Machine Learning

    Section 31: Pandas Exploratory Data Analysis Projects on Kaggle Dataset

    Lecture 175 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 1

    Lecture 176 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 2

    Lecture 177 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 3

    Lecture 178 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 4

    Lecture 179 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 1

    Lecture 180 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 2

    Lecture 181 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 3 I

    Lecture 182 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 3 II

    Lecture 183 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 4 I

    Lecture 184 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 4 II

    Lecture 185 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 5

    Lecture 186 Pandas EDA Project 3 - Sales Analysis - Part 1

    Lecture 187 Pandas EDA Project 3 - Sales Analysis - Part 2

    Lecture 188 Pandas EDA Project 3 - Sales Analysis - Part 3

    Lecture 189 Pandas EDA Project 3 - Sales Analysis - Part 4

    Section 32: Pandas integration with Streamlit

    Lecture 190 Streamlit - The Introduction

    Lecture 191 Streamlit - Display elements

    Lecture 192 Streamlit - Input Elements

    Lecture 193 Streamlit - Markdown in Action

    Lecture 194 Streamlit - Multipage Navigations

    Lecture 195 Pandas & Streamlit Dashboard - Part 1

    Lecture 196 Pandas & Streamlit Dashboard - Part 2

    Lecture 197 Pandas & Streamlit Dashboard - Part 3

    Lecture 198 Pandas & Streamlit Dashboard - Part 4

    For someone who wants to Learn Data Analysis & Visualisation in Pandas, Pandas Plotting Lib, Numpy, Python, Streamlit, Problem Solving & 5 EDA Projects