Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Healthcare It Decoded - Data Analytics

    Posted By: ELK1nG
    Healthcare It Decoded - Data Analytics

    Healthcare It Decoded - Data Analytics
    Published 5/2024
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 5.83 GB | Duration: 10h 3m

    Using Excel Real Statistics Add-In

    What you'll learn

    Understand the End to End Data Analysis Workflow

    Understand basics or Excel Real Statistics Addin

    Apply different Machine Learning Algorithms using Excel Real Statistics AddIn

    Demonstrate knowledge of applying Algorithms like Regression, KMeans using Healthcare Data

    Requirements

    No specific experience required.

    Description

    Are you Interested in learning how to apply some machine learning algorithms using Healthcare data and that too using Excel? Yes, then look no further. This course has been designed considering various parameters. I combine my experience of twenty two years in Health IT and twelve years in teaching the same to students of various backgrounds (Technical as well as Non-Technical).In this course you will learn the following:Understand the Patient Journey via the Revenue Cycle Management Workflow - Front, Middle and Back OfficeThe Data Visualization Journey - Moving from Source System to creating ReportsUnderstand Descriptive, Diagnostic, Predictive and Prescriptive Analytics  At present I have explained below AlgorithmsSimple Linear Regression | Multiple Linear Regression | Weighted Linear Regression | Logistic Regression | Multinomial Regression | Ordinal Regression | KNN Classification | KMeans Clustering Classic Time Series | ARIMA |  Some of the concepts key explained are listed below Homoscedasticity vs HeteroskedasticityBreusch-Pagan & White TestConfusion MatrixNominal vs Ordinal DataAUC & ROC CurveACF & PACF in Time SeriesDifferencing in Time Series Healthcare Datasets to create the algorithms.I have listed a the healthcare datasets used belowHealth Insurance DataCovid CasesAsthma DataObesity Member Enrollment Pharma SalesProstate CancerBreast CancerMaternal Health Risk**Course Image cover has been designed using assets from Freepik website.

    Overview

    Section 1: Introduction

    Lecture 1 Introduction

    Lecture 2 Master of The Mystic Arts

    Lecture 3 Installing Real Statistics AddIn

    Section 2: Hospital Patient Journey

    Lecture 4 Appointment to Registration

    Lecture 5 Insurance Eligibility

    Lecture 6 Admissions & Financial Counseling

    Lecture 7 Point of Care OPD

    Lecture 8 Point of Care IPD

    Lecture 9 Overview of Codes & Standards

    Lecture 10 Medical Transcription & Coding

    Lecture 11 Back Office

    Section 3: Data Visualization & Analytics - The Journey

    Lecture 12 Understanding the Source Systems

    Lecture 13 Extract the Data

    Lecture 14 Transform the Data

    Lecture 15 The Logical Data Model

    Lecture 16 Load the Data

    Lecture 17 Insights & Foresights

    Lecture 18 A Quick Recap

    Lecture 19 The Lion and The Fox

    Lecture 20 Descriptive Analytics - Patient Appointments Example

    Lecture 21 Diagnostic Analytics - Patient Appointments Example

    Lecture 22 Predictive Analytics - Patient Appointments Example

    Lecture 23 Prescriptive Analytics - Patient Appointments Example

    Lecture 24 Descriptive to Prescriptive Analytics - Additional Examples

    Section 4: Some Basics Definitions

    Lecture 25 AI vs ML vs DL

    Lecture 26 Supervised Learning

    Lecture 27 Unsupervised Learning

    Lecture 28 Reinforcement Learning

    Section 5: Others

    Lecture 29 Solving #Name Error in Excel

    Section 6: Linear Regression

    Lecture 30 Linear Regression - Download the Data

    Lecture 31 Regression & Eugenics

    Lecture 32 Simple Linear Regression - The Logic

    Lecture 33 Simple Linear Regression - Overview of Insurance Data

    Lecture 34 Simple Linear Regression - Method 1

    Lecture 35 Simple Linear Regression - Method 1 Prediction

    Lecture 36 Simple Linear Regression - Method 2

    Lecture 37 Simple Linear Regression - Method 2 Prediction

    Lecture 38 Simple Linear Regression - Method 3

    Lecture 39 Simple Linear Regression - Method 3 Prediction

    Lecture 40 Multiple Linear Regression

    Lecture 41 Multiple Linear Regression - Dummy Variables

    Lecture 42 Multiple Linear Regression - Missing Values

    Lecture 43 Multiple Linear Regression - Add Gender Dummy Variable

    Lecture 44 Multiple Linear Regression - Add Smoker Dummy Variable

    Lecture 45 Multiple Linear Regression - Add Region Dummy Variable

    Lecture 46 Multiple Linear Regression - Excel Base Data

    Lecture 47 Multiple Linear Regression - Applying MLR

    Lecture 48 Multiple Linear Regression - Understanding the Output (Overall Fit)

    Lecture 49 Multiple Linear Regression - Understanding the Output (Model Compraison)

    Lecture 50 Multiple Linear Regression - Understanding the Output (ANOVA)

    Lecture 51 Multiple Linear Regression - Understanding the Output (Intercept)

    Lecture 52 Multiple Linear Regression - Understanding the Output (Multicollinearity)

    Lecture 53 Multiple Linear Regression - Understanding the Output (p-value)

    Lecture 54 Multiple Linear Regression - Understanding the Output (Predicted Value)

    Lecture 55 Multiple Linear Regression - Iteration #2

    Lecture 56 Age - Descriptive Statistics

    Lecture 57 All Variables - Descriptive Statistics

    Section 7: Weighted Linear Regression

    Lecture 58 Weighted Linear Regression - Download the Data

    Lecture 59 Homoscedasticity vs Heteroskedasticity

    Lecture 60 Homoscedasticity Data Example

    Lecture 61 Heteroskedasticity

    Lecture 62 Heteroskedasticity Test: Breusch-Pagan & White Test

    Lecture 63 Weighted Linear Regression - The Logic

    Lecture 64 Weighted Linear Regression - Assigning Weights

    Lecture 65 Weighted Linear Regression - Checking Heteroskedasticity

    Lecture 66 Weighted Linear Regression - Method #1

    Lecture 67 Weighted Linear Regression - Method #1 Prediction

    Lecture 68 Weighted Linear Regression - Method #2

    Section 8: Logistic Regression

    Lecture 69 Logistic Regression - Download the Data

    Lecture 70 Logistic Regression Intuition - My Yoga Story

    Lecture 71 Logistic Regression Intuition - My Yoga Story Part 2

    Lecture 72 Logistic Regression - The Confusion Matrix Part 1

    Lecture 73 Logistic Regression - The Confusion Matrix Part 2

    Lecture 74 Logistic Regression - The Confusion Matrix Part 3

    Lecture 75 Logistic Regression - Prostate Cancer Data

    Lecture 76 Logistic Regression - Descriptive Statistics

    Lecture 77 Logistic Regression - Missing Values

    Lecture 78 Logistic Regression - Pivot Table for Mean

    Lecture 79 Logistic Regression - Imputing the data

    Lecture 80 Logistic Regression - Applying the model

    Lecture 81 Logistic Regression - ROC Curve

    Lecture 82 Logistic Regression - OP Confusion Matrix

    Lecture 83 Logistic Regression - OP Parameters

    Lecture 84 Logistic Regression - Other Output

    Lecture 85 Logistic Regression Predicted OP Part 1

    Lecture 86 Logistic Regression Predicted OP Part 2

    Lecture 87 Logistic Regression Predicted OP Part 3

    Lecture 88 Logistic Regression Predicted OP Part 4

    Lecture 89 Logistic Regression - Iteration 2

    Section 9: Multinomial Logistic Regression

    Lecture 90 Multinomial Logistic Regression - Download the Data

    Lecture 91 Nominal vs Ordinal Data

    Lecture 92 Multinomial Logistic Regression - Asthma Data

    Lecture 93 Multinomial Logistic Regression - Data Cleaning Part 1

    Lecture 94 Multinomial Logistic Regression - Data Cleaning Part 2

    Lecture 95 Multinomial Logistic Regression - Data Cleaning Part 3

    Lecture 96 Multinomial Logistic Regression - Data Cleaning Part 4

    Lecture 97 Multinomial Logistic Regression - Applying using Real Statistics

    Lecture 98 Multinomial Logistic Regression - OP Summary

    Lecture 99 Multinomial Logistic Regression - Predicted Value

    Lecture 100 Multinomial Logistic Regression - Primary Tumor Data (2nd Example)

    Lecture 101 Multinomial Logistic Regression - Tumor Data Cleaning Part 1

    Lecture 102 Multinomial Logistic Regression - Tumor Data Cleaning Part 2

    Lecture 103 Multinomial Logistic Regression - Tumor Data Cleaning Part 3

    Lecture 104 Multinomial Logistic Regression - Tumor Data Applying MLR

    Lecture 105 Multinomial Logistic Regression - Tumor Data Predicting Values

    Section 10: Ordinal Regression

    Lecture 106 Ordinal Regression - Download the Data

    Lecture 107 Ordinal Regression - Obesity Data

    Lecture 108 Ordinal Regression - Cleaning Data Part 1

    Lecture 109 Ordinal Regression - Cleaning Data Part 2

    Lecture 110 Ordinal Regression - Execution Part 1

    Lecture 111 Ordinal Regression - Why the Error?

    Lecture 112 Ordinal Regression - Calculate BMI

    Lecture 113 Ordinal Regression - Execution Part 2

    Lecture 114 Ordinal Regression - Predicted Values

    Lecture 115 Ordinal Regression - Confusion Matrix

    Lecture 116 Ordinal Regression - Physical Activity Data

    Lecture 117 Ordinal Regression - Execution Part 3

    Lecture 118 Ordinal Regression - Predicted Values Part 2

    Lecture 119 Ordinal Regression - Confusion Matrix Part 2

    Section 11: KNN: k-nearest neighbors (Classification/Supervised Learning)

    Lecture 120 KNN - Download the Data

    Lecture 121 KNN - Sorting Hat Intution Part 1

    Lecture 122 KNN - Sorting Hat Intuition Part 2

    Lecture 123 KNN - Prostate Cancer Data

    Lecture 124 KNN - Prostate Cancer Scatter Plot

    Lecture 125 KNN - Prostate Cancer Applying the Logic - Part 1

    Lecture 126 KNN - Prostate Cancer Applying the Logic - Part 2

    Lecture 127 KNN - Breast Cancer Data

    Lecture 128 KNN - Breast Cancer Data - Applying the Logic Part 1

    Lecture 129 KNN - Breast Cancer Data - Applying the Logic Part 2

    Lecture 130 KNN - Breast Cancer Data - Applying the Logic Part 3

    Lecture 131 KNN - Breast Cancer Data - Simple Excel Formula

    Section 12: K-Means (Clustering/Unsupervised Learning)

    Lecture 132 K-Means - Download the Data

    Lecture 133 First Impressions - The Intuition

    Lecture 134 KMeans - Logic of Centroid

    Lecture 135 KMeans - Elbow Method

    Lecture 136 KMeans - Iris Dataset

    Lecture 137 KMeans - Iris Data - Part 1

    Lecture 138 KMeans - Iris Data - Part 2

    Lecture 139 KMeans - Iris Data - Part 3

    Lecture 140 KMeans - Maternal Health Data

    Lecture 141 KMeans - Maternal Health Analysis - Part 1

    Lecture 142 KMeans - Maternal Health Analysis - Part 2

    Lecture 143 KMeans - Note of Caution

    Lecture 144 Quick Ordinal Regression on Maternal Health Data

    Section 13: Basic Time Series Forecasting

    Lecture 145 Time Series - Download the Data

    Lecture 146 Twister - The Intuition

    Lecture 147 Classic Time Series Components

    Lecture 148 TFS Example 01 - Using Seasonality

    Lecture 149 TFS Example 02 - Using Seasonality + Trend Part 01

    Lecture 150 TFS Example 02 - Using Seasonality + Trend Part 02

    Lecture 151 TFS Example 02 - Using Seasonality + Trend Part 03

    Lecture 152 TFS Example 03 - DE-Seasonalize Part 01

    Lecture 153 TFS Example 03 - DE-Seasonalize Part 02

    Lecture 154 TFS Example 03 - DE-Seasonalize Part 03

    Section 14: ARIMA - Time Series Forecasting

    Lecture 155 ARIMA - Download the Data

    Lecture 156 ARIMA Intuition - Part 1: Summer of 92

    Lecture 157 ARIMA Intuition - Part 1A: Summer of 92 (Article)

    Lecture 158 ARIMA Basics - Part 2

    Lecture 159 Simple Moving Average Basic Example

    Lecture 160 Simple Moving Average Basic Example

    Lecture 161 Simple Moving Average Covid Part 1

    Lecture 162 Simple Moving Average Covid Part 2

    Lecture 163 Simple Moving Average Covid Part 3

    Lecture 164 ARIMA Understanding ACF PACF

    Lecture 165 ARIMA Understanding ACF PACF (External Article)

    Lecture 166 ARIMA Pharma Sales Calculate ACF & PACF

    Lecture 167 ARIMA Pharma Sales Calculate Stationarity

    Lecture 168 ARIMA Pharma Sales Apply ARIMA

    Lecture 169 ARIMA Pharma Sales 2nd Example

    Lecture 170 ARIMA Enrollment Data Part - 1

    Lecture 171 ARIMA Enrollment Data Part - 2

    Lecture 172 ARIMA Enrollment Data Part - 3 Simple Moving Average

    Lecture 173 ARIMA Enrollment Data Part - 4 ARIMA (ACF PACF)

    Lecture 174 ARIMA Enrollment Data Part - 5 Differencing

    Lecture 175 ARIMA Enrollment Data Part - 6 Applying ARIMA

    Section 15: Bonus Section

    Lecture 176 Bonus Session - About Me

    Beginners curious about create basic Analytics using Healthcare Data,Health IT Professionals,Healthcare/Hospital Management Professionals,Professionals from a Non-Technical background who want to understand basics of Analytics