Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Data Analytics Masters - From Basics To Advanced

    Posted By: ELK1nG
    Data Analytics Masters - From Basics To Advanced

    Data Analytics Masters - From Basics To Advanced
    Published 9/2024
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 34.43 GB | Duration: 46h 12m

    Master Data Analysis: Learn Python, EDA, Stats, MS Excel, SQL, Power BI, Tableau, Predictive Analytics & ETL Basics

    What you'll learn

    Discover how to effectively handle, analyze, and visualize data using Python and its robust libraries, including Pandas, NumPy, Matplotlib, and Seaborn.

    Learn how to conduct Exploratory Data Analysis (EDA) to reveal insights, detect patterns, and prepare data for further analysis through effective visualization

    Acquire the skills to extract, manipulate, and aggregate data using SQL. You will utilize MySQL to handle complex databases and execute sophisticated queri

    Master the art of creating interactive and insightful dashboards using Power BI and Tableau. You'll apply DAX for complex calculations in Power BI and integrate

    Explore the fundamentals of machine learning, including classification, regression, and time series analysis, to enhance your predictive analytics skills.

    Learn the fundamentals of ETL processes to effectively extract, transform, and load data for analysis.

    Requirements

    No pre-requisites are required for this course

    Description

    Congrats on enrolling in the Data Analytics Masters Course!!Need of Data AnalyticsThe outburst of data is transforming businesses. Companies - big or small - are now expecting their business decisions to be based on data-led insight.Data specialists have a tremendous impact on business strategies and marketing tactics.The demand for data specialists is on the rise while the supply remains low, thus creating great job opportunities for individuals within this field.Today, it is almost impossible to find any brand that does not have a social media presence; soon, every company will need data analytics professionals.This makes it a wise career move that has a future in business.Job Roles after the courseThis course will help you to step forward in Data Analytics and choose the following rolesData AnalystBusiness AnalystBI AnalystBI DeveloperPower BI DeveloperTableau Developerand many more…Syllabus:Module 1: Python for Data AnalyticsModule 2: Exploratory Data AnalysisModule 3: Business StatisticsModule 4: SQLModule 5: Microsoft ExcelModule 6: Power BIModule 7: TableauModule 8: Predictive ModellingModule 9: Data Warehousing and ETLModule 10: Interview GuidesModule 11: Capstone ProjectsConclusion:By the end of this course, you'll have a strong foundation in data analysis and the confidence to tackle real-world data problems. You'll be ready to step into a data analyst role with a robust portfolio of projects to showcase your skills.Enroll now and start your journey to becoming a proficient Data Analyst!

    Overview

    Section 1: Introduction

    Lecture 1 Welcome Page

    Lecture 2 Welcome to the Course

    Lecture 3 What is Data Analytics

    Lecture 4 Importance of Data Analytics

    Lecture 5 Types of Data

    Lecture 6 Types of Statistical Analysis

    Lecture 7 Steps to obtain a Data Analytics solution

    Lecture 8 Business Understanding

    Lecture 9 Data Understanding

    Lecture 10 Data Collection

    Lecture 11 Data Preparation

    Lecture 12 Data Modelling

    Lecture 13 Deployment

    Lecture 14 Use Case

    Section 2: Python

    Lecture 15 Course Contents

    Lecture 16 Introduction to Python

    Lecture 17 Variables & Keywords

    Lecture 18 Datatypes Operators

    Lecture 19 Lists

    Lecture 20 Tuples

    Lecture 21 Sets

    Lecture 22 Doctionary

    Lecture 23 Loops & Iteration

    Lecture 24 Functions

    Lecture 25 Map Reduce Filter

    Lecture 26 File Handling

    Lecture 27 Control Structures

    Lecture 28 OOPS

    Lecture 29 NumPy

    Lecture 30 Pandas

    Lecture 31 Data Visualization

    Lecture 32 Matplotlib

    Lecture 33 Seaborn

    Section 3: Business Statistics

    Lecture 34 Course Contents

    Lecture 35 Introduction

    Lecture 36 Types of Data (Agenda)

    Lecture 37 Descriptive Stats

    Lecture 38 Inferential Stats

    Lecture 39 Qualitative Data

    Lecture 40 Quantitative Data

    Lecture 41 Sampling Techniques (Agenda)

    Lecture 42 Population vs Sample

    Lecture 43 Why Sampling is important

    Lecture 44 Types of Sampling

    Lecture 45 Cluster Random Sampling

    Lecture 46 Probability Sampling

    Lecture 47 Non probability sampling

    Lecture 48 Population Sampling

    Lecture 49 Why n-1 and not n

    Lecture 50 Descriptive Analytics (Agenda)

    Lecture 51 Measures of Central Tendency

    Lecture 52 Mean

    Lecture 53 Median

    Lecture 54 Mode

    Lecture 55 Measures of Dispersion

    Lecture 56 Range

    Lecture 57 IQR

    Lecture 58 Variance Standard Deviation

    Lecture 59 Mean Deviation

    Lecture 60 Probability (Agenda)

    Lecture 61 Probability

    Lecture 62 Addition Rule

    Lecture 63 Independent Events

    Lecture 64 Cumulative Probability

    Lecture 65 Conditional Probability

    Lecture 66 Bayes Theorem 1

    Lecture 67 Bayes Theorem 2

    Lecture 68 Probability Distrubution (Agenda)

    Lecture 69 Uniform Distribution

    Lecture 70 Binomial Distribution

    Lecture 71 Poisson Distribution

    Lecture 72 Normal Distribution Part 1

    Lecture 73 Normal Distribution Part 2

    Lecture 74 Skewness

    Lecture 75 Kurtosis

    Lecture 76 Calculating Probability with Z-score for Normal Distribution Part 1

    Lecture 77 Calculating Probability with Z-score for Normal Distribution Part 2

    Lecture 78 Calculating Probability with Z-score for Normal Distribution Part 3

    Lecture 79 Covariance & Correlation (Agenda)

    Lecture 80 Covariance

    Lecture 81 Correlation

    Lecture 82 Covariance VS Correlation

    Lecture 83 ANOVA

    Lecture 84 Hypothesis Testing

    Lecture 85 Tailed Tests

    Lecture 86 p-value

    Lecture 87 Types of Test

    Lecture 88 T Test

    Lecture 89 Z Test

    Lecture 90 Chi Square Test

    Lecture 91 Correlation Test (Practicals)

    Section 4: Exploratory Data Analysis

    Lecture 92 Course Contents

    Lecture 93 Agenda

    Lecture 94 DA,DS Process

    Lecture 95 What is EDA

    Lecture 96 Visualization

    Lecture 97 Steps involved in EDA (Data Sourcing)

    Lecture 98 Steps involved in EDA (Data Cleaning)

    Lecture 99 Handle Missing Values (Theory)

    Lecture 100 Handle Missing Values (Practicals)

    Lecture 101 Feature Scaling (Theory)

    Lecture 102 Standardization Example

    Lecture 103 Normalization Example

    Lecture 104 Feature Scaling (Practicals)

    Lecture 105 Outlier Treatment (Theory)

    Lecture 106 Outlier Treatment (Practicals)

    Lecture 107 Invalid Data

    Lecture 108 Types of Data

    Lecture 109 Types of Analysis

    Lecture 110 Univariate Analysis

    Lecture 111 Bivariate Analysis

    Lecture 112 Multivariate Analysis

    Lecture 113 Numerical Analysis

    Lecture 114 Analysis Practicals

    Lecture 115 Derived Metrics

    Lecture 116 Feature Binning (Theory)

    Lecture 117 Feature Binning (Practicals)

    Lecture 118 Feature Encoding (Theory)

    Lecture 119 Feature Encoding (Practicals)

    Lecture 120 Case Study

    Lecture 121 Data Exploration

    Lecture 122 Data Cleaning

    Lecture 123 Univariate Analysis

    Lecture 124 Bivariate Analysis Part 1

    Lecture 125 Bivariate Analysis Part 2

    Lecture 126 EDA Report

    Section 5: SQL

    Lecture 127 Course Contents

    Lecture 128 Installation

    Lecture 129 Data Architecture - File server vs client server

    Lecture 130 Introduction to SQL

    Lecture 131 Constraints in SQL

    Lecture 132 Table Basics - DDLs

    Lecture 133 Table Basics - DQLs

    Lecture 134 Table Basics - DMLs

    Lecture 135 Joins

    Lecture 136 Data Import Export

    Lecture 137 Aggregation Functions

    Lecture 138 String functions

    Lecture 139 Date Time Functions

    Lecture 140 Regular Expressions

    Lecture 141 Nested Queries

    Lecture 142 Views

    Lecture 143 Stored Procedures

    Lecture 144 Windows Function

    Lecture 145 SQL Python connectivity

    Section 6: Microsoft Excel

    Lecture 146 Course Contents

    Lecture 147 Pre-defined Functions

    Lecture 148 Datetime Functions

    Lecture 149 String Functions

    Lecture 150 Mathematical Functions

    Lecture 151 Lookup (Hlookup,Vlookup)

    Lecture 152 Logical & Error Functions

    Lecture 153 Statistical Functions

    Lecture 154 Images in Excel

    Lecture 155 Excel Formatting

    Lecture 156 Custom Formatting

    Lecture 157 Conditional Formatting

    Lecture 158 Charts in Excel

    Lecture 159 Data Analysis using Excel

    Lecture 160 Pivot Tables

    Lecture 161 Dashboarding in Excel

    Lecture 162 Others

    Lecture 163 What-If Tools - Scenario Manager, Goal Seek

    Section 7: Power BI

    Lecture 164 Course Contents

    Lecture 165 Introduction

    Lecture 166 Life Hack (How to have Power BI Pro License)

    Lecture 167 Power BI Desktop

    Lecture 168 Power BI Services

    Lecture 169 Power Query Editor

    Lecture 170 Data Profiling

    Lecture 171 Group by Dialog

    Lecture 172 Applied Steps

    Lecture 173 Append vs Merge

    Lecture 174 Power BI Visuals

    Lecture 175 Power BI Charts

    Lecture 176 Introduction to DAX

    Lecture 177 Implicit Measures

    Lecture 178 DAX Formula

    Lecture 179 Basic DAX Functions

    Lecture 180 Date Functions

    Lecture 181 CALENDAR Functions

    Lecture 182 Contexts Row vs Filter

    Lecture 183 CALCULATE & FILTER

    Lecture 184 IF ELSE Conditions

    Lecture 185 Time Intelligence Functions

    Lecture 186 X vs Non X Functions

    Lecture 187 Tool Tips & Drill Throughs

    Lecture 188 Power BI Relationships

    Lecture 189 KPIs in Power BI

    Lecture 190 Administration in Power BI

    Lecture 191 Static Row Level Security

    Lecture 192 Dynamic Row Level Security

    Lecture 193 Formatting

    Lecture 194 Best Practices

    Lecture 195 EDA

    Lecture 196 Live Projects

    Section 8: Tableau

    Lecture 197 Course Contents

    Lecture 198 What is Data Visualization

    Lecture 199 BI Process

    Lecture 200 What is Tableau

    Lecture 201 Features of Tableau

    Lecture 202 How to use Tableau

    Lecture 203 Tableau Architecture

    Lecture 204 Tableau Desktop

    Lecture 205 Tableau vs Power BI

    Lecture 206 Relationships, Joins , Unions

    Lecture 207 Sets in Tableau

    Lecture 208 Groups in Tableau

    Lecture 209 Hierarchies in Tableau

    Lecture 210 Filters in Tableau

    Lecture 211 Highlighting

    Lecture 212 Device Deisgner

    Lecture 213 Parameters

    Lecture 214 Data Blending

    Lecture 215 Transparency

    Lecture 216 Date Aggregation

    Lecture 217 Generated Fields

    Lecture 218 Discrete vs Continuous

    Lecture 219 Charts in Tableau

    Lecture 220 Pivot Tables in Tableau

    Lecture 221 LOD Expressions

    Lecture 222 Calculated Fields

    Lecture 223 Formatting

    Lecture 224 Forecasting in Tableau

    Lecture 225 Analytics in Tableau

    Lecture 226 Dashboarding

    Section 9: Predictive Analytics

    Lecture 227 Course Contents

    Lecture 228 Introduction

    Lecture 229 Predictive Analytics Process

    Lecture 230 How model works

    Lecture 231 Why Predictive Analytics

    Lecture 232 Applications

    Lecture 233 What is Machine Learning

    Lecture 234 Types Of Machine Learning

    Lecture 235 Classification

    Lecture 236 KNN

    Lecture 237 KNN Excel example

    Lecture 238 Classification Practical

    Lecture 239 KNN Code

    Lecture 240 Decision Tree Example

    Lecture 241 Decision Tree Code

    Lecture 242 Random Forest

    Lecture 243 Random Forest Code

    Lecture 244 Boosting

    Lecture 245 Boosting Code

    Lecture 246 Regression Theory

    Lecture 247 Regression Theory Code

    Lecture 248 Clustering

    Lecture 249 Clustering Procticals

    Lecture 250 Time Series

    Lecture 251 Time Series Forecasting Code

    Section 10: ETL

    Lecture 252 Course Contents

    Lecture 253 Introduction

    Lecture 254 What is ETL

    Lecture 255 ETL Tools

    Lecture 256 What is Data Warehouse

    Lecture 257 Benefits of Data Warehouse

    Lecture 258 Data Warehouse Structure

    Lecture 259 Why do we need Staging

    Lecture 260 What are Data Marts

    Lecture 261 Data Lake

    Lecture 262 Data lake vs Data Warehouse

    Lecture 263 Elements of Data lake

    Section 11: Interview Q&A Guides

    Lecture 264 Interview Guides

    Section 12: Capstone Projects

    Lecture 265 Churn Analysis (Power BI)

    Lecture 266 HR Analytics (Tableau)

    Complete beginners interested to learn Data Analytics can join this program,Any Technical or Non Technical person can enroll for this program