Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Complete Data Science & Machine Learning Course

    Posted By: ELK1nG
    Complete Data Science & Machine Learning Course

    Complete Data Science & Machine Learning Course
    Published 5/2024
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 1.23 GB | Duration: 4h 12m

    Learn Complete Data Science & Machine Learning Course

    What you'll learn

    Master the essential concepts, techniques, and tools of data science and machine learning.

    Acquire hands-on experience with Python programming and its libraries for data manipulation, analysis, and visualization.

    Build and evaluate predictive models using a variety of machine learning algorithms and techniques.

    Complete Data Science & Machine Learning Course

    Requirements

    python installed

    Description

    Course Title: Complete Data Science and Machine Learning CourseCourse Description:Welcome to the "Complete Data Science and Machine Learning Course"! In this comprehensive course, you will embark on a journey to master the fundamentals of data science and machine learning, from data preprocessing and exploratory data analysis to building predictive models and deploying them into production. Whether you're a beginner or an experienced professional, this course will provide you with the knowledge and skills needed to succeed in the dynamic field of data science and machine learning.Class Overview:Introduction to Data Science and Machine Learning:Understand the principles and concepts of data science and machine learning.Explore real-world applications and use cases of data science across various industries.Python Fundamentals for Data Science:Learn the basics of Python programming language and its libraries for data science, including NumPy, Pandas, and Matplotlib.Master data manipulation, analysis, and visualization techniques using Python.Data Preprocessing and Cleaning:Understand the importance of data preprocessing and cleaning in the data science workflow.Learn techniques for handling missing data, outliers, and inconsistencies in datasets.Exploratory Data Analysis (EDA):Perform exploratory data analysis to gain insights into the underlying patterns and relationships in the data.Visualize data distributions, correlations, and trends using statistical methods and visualization tools.Feature Engineering and Selection:Engineer new features and transform existing ones to improve model performance.Select relevant features using techniques such as feature importance ranking and dimensionality reduction.Model Building and Evaluation:Build predictive models using machine learning algorithms such as linear regression, logistic regression, decision trees, random forests, and gradient boosting.Evaluate model performance using appropriate metrics and techniques, including cross-validation and hyperparameter tuning.Advanced Machine Learning Techniques:Dive into advanced machine learning techniques such as support vector machines (SVM), neural networks, and ensemble methods.Model Deployment and Productionization:Deploy trained machine learning models into production environments using containerization and cloud services.Monitor model performance, scalability, and reliability in production and make necessary adjustments.Enroll now and unlock the full potential of data science and machine learning with the Complete Data Science and Machine Learning Course!

    Overview

    Section 1: Introduction To Complete Data Science & Machine Learning Course

    Lecture 1 Introduction To Course

    Section 2: Complete Python Programming Course

    Lecture 2 Python Complete Course Introduction

    Lecture 3 Python Class 1 : Introduction To Python

    Lecture 4 Python Class 2 : Setting Python Environment

    Lecture 5 Python Class 3 : Introduction To Variables

    Lecture 6 Python Class 4 : Introduction To Keywords

    Lecture 7 Python Class 5 : Introduction To Datatypes

    Lecture 8 Python Class 6 : ID Function

    Lecture 9 Python Class 7 : Arithmetic Operator

    Lecture 10 Python Class 8 : Logical Operator

    Lecture 11 Python Class 9 : Comparison Operator

    Lecture 12 Python Class 10 : Bitwise Operator

    Lecture 13 Python Class 11 : Membership Operator

    Lecture 14 Python Class 12 : Identity Operator

    Lecture 15 Python Class 13 : Conditional Statements

    Lecture 16 Python Class 14 : For Loop and Range Function

    Lecture 17 Python Class 15 : While Loops

    Lecture 18 Python Class 16 : Break and Continue

    Lecture 19 Python Class 17 : Function

    Lecture 20 Python Class 18 : Try Except Finally Blocks

    Lecture 21 Python Class 19 : String and Functions

    Lecture 22 Python Class 20 : List and Functions

    Lecture 23 Python Class 21 : Tuple and Functions

    Lecture 24 Python Class 22 : Dictionary and Functions

    Lecture 25 Python Class 23 : Class and Object

    Lecture 26 Python Class 24 : Class Methods

    Lecture 27 Python Class 25 : Inheritance and its types

    Lecture 28 Python Class 26 : Polymorphism and its types

    Lecture 29 Python Class 27 : Encapsulation and Access Modifiers

    Lecture 30 Python Class 28 : Abstraction

    Lecture 31 Python Class 29 : Mini Project

    Section 3: Complete Data Science Course

    Lecture 32 Complete Data Science Course

    Lecture 33 Numpy Complete Course

    Lecture 34 Numpy Class 1 : Import and Install

    Lecture 35 Numpy Class 2 : Array and its Types

    Lecture 36 Numpy Class 3 : Datatypes

    Lecture 37 Numpy Class 4 : NDIM Function

    Lecture 38 Numpy Class 5 : ARANGE Function

    Lecture 39 Numpy Class 6 : CONCATENATE Function

    Lecture 40 Numpy Class 7 : NDMIN Function

    Lecture 41 Numpy Class 8 : NDITER Function

    Lecture 42 Numpy Class 9 : All Functions

    Lecture 43 Pandas Class 1 : Import Dataset

    Lecture 44 Pandas Class 2 : Head & Tail Function

    Lecture 45 Pandas Class 3 : Info Function

    Lecture 46 Pandas Class 4 : Drop na Function

    Lecture 47 Pandas Class 5 : Fill na Function

    Lecture 48 Pandas Class 6 : Drop Duplicates Function

    Lecture 49 Pandas Class 7 : Replace Values Function

    Lecture 50 Matplotlib Class 1 : Import Dataset

    Lecture 51 Matplotlib Class 2 : Show Function

    Lecture 52 Matplotlib Class 3 : Marker Function

    Lecture 53 Matplotlib Class 4 : Xlabel Ylabel Function

    Lecture 54 Matplotlib Class 5 : Title Function

    Lecture 55 Matplotlib Class 6 : Linestyle Linewidth Function

    Lecture 56 Matplotlib Class 7 : Barplot

    Section 4: Complete Machine Learning Course

    Lecture 57 Complete Machine Learning Introduction

    Lecture 58 Machine Learning Class 1 : Linear Regression

    Lecture 59 Machine Learning Class 2 : Logistics Regression

    Lecture 60 Machine Learning Class 3 : Support Vector Machine

    Lecture 61 Machine Learning Class 4 : KNN

    Lecture 62 Machine Learning Class 5 : K Means Clustering

    Lecture 63 Machine Learning Class 6 : Naive Bayes

    Lecture 64 Machine Learning Class 7 : Decision Tree Classifier

    Lecture 65 Machine Learning Class 8 : Random Forest

    Students and professionals interested in pursuing a career in data science, machine learning, or artificial intelligence.,Professionals seeking to enhance their skills and stay competitive in the rapidly evolving field of data science and machine learning.