Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Azure Data Engineering End-To-End Course (English)

    Posted By: ELK1nG
    Azure Data Engineering End-To-End Course (English)

    Azure Data Engineering End-To-End Course (English)
    Published 2/2025
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 34.38 GB | Duration: 60h 45m

    Learn multiple tools in Azure data engineering stack through this course, all in one bundle!

    What you'll learn

    Understand end-to-end flow of Azure data engineering stack

    Be ready to appear for interviews and crack them easily

    Become independent to maximum level in handling tasks

    End-to-end project covering entire lifecycle

    Requirements

    No pre-requistes for this course as it created from scratch for everyone for every single tool/technology making it easier to learn

    Description

    This course covers multiple tools and technologies needed to become an azure data engineer.The best part is there are no pre-requisites!Anyone can enroll and learn through this course.Our videos are simple to understand, to the point, short and yet covering everything you need.The content we are offering in this course is immense and requires full dedication, self -discipline and daily learning to ensure a completion and to make you independent skilled professional.We have trained 1000's of students and shaped their career and you could be the next one, join us by enrolling in the course and benefit immensely through our course offering.You will get best of both quality and quantity!In this course you will learn below tools and technologies from scratch:SQL : Learn structured query language in Microsoft SQL Server.Data warehousing : Learn fundamental concepts of data warehousing.Azure cloud : Learn about cloud computing, benefits and different services.Azure Data factory: Learn ETL on azure cloud, code free.Python programming: Learn programming in python with simple way.Big data fundamentals: Master the big data concepts to build strong foundation.Databricks: Learn databricks, the leading data platform.PySpark: Learn big data processing in pyspark on databricks.Delta lake: Learn the delta lake features.Spark structured streamingAzure devopsEnd-to-end project (Release in progress)This course is for everyone from beginner to architect level!

    Overview

    Section 1: Introduction to Azure Data Engineering

    Lecture 1 Introduction

    Section 2: SQL

    Lecture 2 001. Introduction to SQL

    Lecture 3 002. SQL Server Installation

    Lecture 4 003. Create And Drop Database

    Lecture 5 004. System Databases

    Lecture 6 Create and Drop Tables

    Lecture 7 006. Insert Data In Table

    Lecture 8 007. Select

    Lecture 9 008. InstallAdventureWorksSampleDB

    Lecture 10 009. GetUniqueValues

    Lecture 11 010. Sort Data

    Lecture 12 011. Comments

    Lecture 13 012. Filter Data

    Lecture 14 013.Filter With Wild Characters

    Lecture 15 014. Aggregate Function

    Lecture 16 015. Grouping Rows

    Lecture 17 016. Select..Into

    Lecture 18 017. Create Table With Primary Key

    Lecture 19 018. Create Table With NOT NULL Constraint

    Lecture 20 019. Create Table With Unique Constraint

    Lecture 21 020. Create Table With Check Constraint

    Lecture 22 021. Create Table With Default Constraint

    Lecture 23 022. Create Table With AutoIncrement

    Lecture 24 023.Update Rows In Table

    Lecture 25 024. Delete Rows From Table

    Lecture 26 025. String Functions - Part 1

    Lecture 27 026. String Functions - Part 2

    Lecture 28 027. Scenario - Combine Names

    Lecture 29 028. Scenario - Extract First And Last Names

    Lecture 30 029. Date Time Functions - Part 1

    Lecture 31 030. Date Time Functions - Part 2

    Lecture 32 031. Date Time Functions - Part 3

    Lecture 33 032. Data Type - Part 1 - Integers

    Lecture 34 033. Data Types - Part 2 - Approximate Numeric

    Lecture 35 034. Data Types - Part 3 - Date Time

    Lecture 36 035. Data Types - Part 4 - Strings

    Lecture 37 036. Data Types - Part 5 - Unique identifier

    Lecture 38 037. Data Types - Part 6 - bit

    Lecture 39 038. Data Type Conversion

    Lecture 40 039. Joins Part 1 – Introduction to joins

    Lecture 41 040. Joins Part 2- Using Joins

    Lecture 42 041. Joins Part 3- Join 3 tables

    Lecture 43 042. Joins Part 4- Using Expressions

    Lecture 44 043. Joins Part 4- Outer Joins

    Lecture 45 044. Scenario - Joins Part 6 – Self Join

    Lecture 46 045. Fact And Dimensions

    Lecture 47 046. IIF Function

    Lecture 48 047. CASE

    Lecture 49 048. IIF & CASE multiple conditions

    Lecture 50 049. Scenario - Custom sorting

    Lecture 51 50. UNION & UNION ALL

    Lecture 52 051. INTERSECT

    Lecture 53 052. EXCEPT

    Lecture 54 053. Foreign key constraint

    Lecture 55 054. Subquery - PART 1

    Lecture 56 055. Subquery - PART2 -IN & NOT IN

    Lecture 57 056. Subquery - PART3 - Update

    Lecture 58 057.Subquery - PART 4-Derived Table

    Lecture 59 058. Subquery - PART 5 - EXISTS, Correlated subquery

    Lecture 60 059. Scenario - Subquery - PART 6 - Get contribution yearwise

    Lecture 61 060. HAVING Clause

    Lecture 62 061. TOP Clause

    Lecture 63 062. Scenario - Get TOP & BOTTOM Products

    Lecture 64 063. Window Functions-PART1 - ROW_NUMBER

    Lecture 65 064. Window Functions - PART 2 - RANK & DENSE_RANK

    Lecture 66 065. Window Functions - PART 3-LAG & LEAD

    Lecture 67 066. Window Functions - PART4 - FIRST_VALUE & LAST_VALUE

    Lecture 68 067. SQL Classification

    Lecture 69 068. ALTER TABLE - PART 1 - Columns

    Lecture 70 069. ALTER TABLE - PART 2- Constraints

    Lecture 71 070. OFFSET

    Lecture 72 071. COALESCE Function

    Lecture 73 072. MERGE

    Lecture 74 073. SCHEMA

    Lecture 75 074. GROUP BY WITH ROLLUP

    Lecture 76 075. GROUP BY WITH CUBE

    Lecture 77 076. PIVOT

    Lecture 78 077. UNPIVOT

    Lecture 79 078. VIEWS

    Lecture 80 079. Common Table Expression - Part1 - Introduction

    Lecture 81 080. Common TableExpression - PART 2 - MultiPart

    Lecture 82 081. Common Table Expression - PART 3 - Recursion

    Lecture 83 082. Variables

    Lecture 84 083. IF..ELSE

    Lecture 85 084. WHILE LOOP

    Lecture 86 085. Temp Tables

    Lecture 87 086. Stored Procedures

    Lecture 88 087. Converting a table to JSON

    Lecture 89 088. Creating Nested JSON Output

    Lecture 90 089. Output Clause

    Lecture 91 090. Slowly Changing Dimensions

    Section 3: SQL Scenarios

    Lecture 92 1. Find Average

    Lecture 93 2. Joins Challenge

    Lecture 94 3. Identify and delete duolicate rows

    Lecture 95 4. Custom Merging

    Lecture 96 005.MissingData-FindMissingDepartments

    Lecture 97 006.Find2ndLargestSalary

    Lecture 98 7. 2nd Largest Salary In Each Department

    Lecture 99 8. RowNumbering

    Lecture 100 9. Find Alternate Rows

    Lecture 101 10. Palindrome

    Lecture 102 11. FindDuplicateEmails

    Lecture 103 12. UpdateCorrectGender

    Lecture 104 13. Transform Student Info

    Lecture 105 14. Defect Classification

    Lecture 106 015. Daily Running Total

    Lecture 107 16. MTD Total

    Lecture 108 17. QTD Total

    Lecture 109 18. YTD Total

    Lecture 110 19. Previous Year Sales And YOY Growth

    Lecture 111 20. 3 month moving sum

    Section 4: 4. Data warehousing

    Lecture 112 1.Introduction to DataWarehousing

    Lecture 113 2. Data Loads

    Lecture 114 3. Storage Layout Models

    Lecture 115 4. Robin Round Distribution

    Lecture 116 5. Hash Distribution

    Lecture 117 6.ACID Properties

    Lecture 118 7. Normalization

    Section 5: 5. Azure

    Lecture 119 1. Cloud Computing

    Lecture 120 2. Cloud Providers

    Lecture 121 3. Azure Introduction

    Lecture 122 4. Create Azure Trial Account

    Lecture 123 5. Getting Started With Azure

    Lecture 124 6. Create Data Lake

    Lecture 125 7. Create Azure SQL Server And Database

    Lecture 126 8. CreateDataFactory

    Lecture 127 9. Upgrade To Pay-as-you-go

    Section 6: 6.Azure Data Factory

    Lecture 128 1. Introduction

    Lecture 129 2. Copy Data Within Datalake

    Lecture 130 3. Copy Entire Folder Specific Files

    Lecture 131 4. Copy data from ADLS to SQLDB & vice versa

    Lecture 132 5. Copy Data Additional Columns

    Lecture 133 6. Set Variable Activity

    Lecture 134 7. Copy files in timeframe

    Lecture 135 8. Get MetaData Activity

    Lecture 136 9. For Each Activity

    Lecture 137 10. Copy Each File to New table

    Lecture 138 11. Truncate & load

    Lecture 139 12. Copy data with upsert

    Lecture 140 13. Append Variable Activity

    Lecture 141 14. Using SQL Queries In Copy Data Activity

    Lecture 142 15. Column Mapping In Copy Data Activity

    Lecture 143 16. Delete Activity

    Lecture 144 17. Copy Data With Stored Procedure

    Lecture 145 18. Stored Procedure Activity

    Lecture 146 19. Lookup Activity

    Lecture 147 20. Filter Activity

    Lecture 148 21. IF Activity

    Lecture 149 22. Switch Activity

    Lecture 150 23. Script Activity

    Lecture 151 24. Validation Activity

    Lecture 152 25. Convert CSV to JSON

    Lecture 153 26. Copy JSON to SQL DB

    Lecture 154 27. Execute Pipeline Activity

    Lecture 155 28. Copy Data If File Exists

    Lecture 156 29. Parameters Vs Variables

    Lecture 157 30. Delete Blank Files

    Lecture 158 31. Copy Header Less CSV

    Lecture 159 32. Retry Logic

    Lecture 160 33. Copy Behavior

    Lecture 161 34. Max Rows Per File

    Lecture 162 35. Split Data Single Criteria

    Lecture 163 36. Split Data Multiple Criteria

    Lecture 164 37. Consolidate Data From Multiple Files

    Lecture 165 38. Consolidate Data From Mutiple Folders

    Lecture 166 39. Copy Data Custom Mappings SingleTable

    Lecture 167 40. Copy Data Custom Mappings - MultipleTables

    Lecture 168 41. Copy Data Pipe Character

    Lecture 169 42. Copy Data Quote Character

    Lecture 170 43. Introduction To DataFlows

    Lecture 171 44. Select Transformation

    Lecture 172 45. SortTransformation

    Lecture 173 46. Filter Transformation

    Lecture 174 47. Derived Column Transformation

    Lecture 175 48. Conditional Split Transformation

    Lecture 176 49. Cast Transformation

    Lecture 177 50. Surrogate Key Transformation

    Lecture 178 51.Aggregate Transformation

    Lecture 179 52. Pivot Transformation

    Lecture 180 53. Unpivot Transformation

    Lecture 181 54.Rank Transformation

    Lecture 182 55. Window Transformation

    Lecture 183 56. Union Transformation

    Lecture 184 57. Lookup Transformation

    Lecture 185 58. Join Transformation

    Lecture 186 59. Exists Transformation

    Lecture 187 60. Flatten Transformation

    Lecture 188 61. Parse Transformation

    Lecture 189 62. Stringify Transformation

    Lecture 190 65. Integration Runtime

    Lecture 191 66. Install Self Hosted Integration Runtime

    Lecture 192 67.Copy Data From Local To ADLS

    Lecture 193 68. Copy Data From Local to Azure SQL DB

    Lecture 194 69. Copy Data Local SQL db to Azure SQL db

    Lecture 195 070. Copy Multiple Tables From Local sql DB to Azure sql DB

    Lecture 196 071. Using Key Vault

    Lecture 197 072. Schedule Trigger

    Section 7: 7.Introduction To Databricks

    Lecture 198 1. Introduction To Databricks

    Lecture 199 2. Community Edition Sign Up

    Lecture 200 3. Databricks Platform Overview

    Section 8: 8.Python Programming

    Lecture 201 1. Introduction And Installation

    Lecture 202 2. print

    Lecture 203 3. Variables

    Lecture 204 4. Concatenate

    Lecture 205 5. Interpolation

    Lecture 206 6. If..else

    Lecture 207 7. Input

    Lecture 208 8. IF..ELIF..ELSE

    Lecture 209 9. For..Loop

    Lecture 210 10. While..Loop

    Lecture 211 11. Break&Continue

    Lecture 212 12. Lists-Part1-IntroductionAndIndexing

    Lecture 213 13. Lists-Part2-Len,Existence&Loop

    Lecture 214 14. Lists-Part 3 – Add&RemoveItems

    Lecture 215 15. Lists-Part4-Count,Copy,Reverse&Sort

    Lecture 216 16. Lists-Part5-UpdatingLists

    Lecture 217 17. Set

    Lecture 218 18. Tuple

    Lecture 219 19. Dictionary

    Lecture 220 20. Comments

    Lecture 221 21. StringOperations-Part1

    Lecture 222 22. StringOperations-Part2

    Lecture 223 23.StringOperations-Part3

    Lecture 224 24. ListComprehensions

    Lecture 225 25. dir

    Lecture 226 26. DateTime-Part1-datetimeModule

    Lecture 227 27. DateTime-Part2-timedelta&timestamp

    Lecture 228 28. DateTime-Part3-monthdeltaModule

    Lecture 229 29. DateTime-Part4-relativedeltaModule

    Lecture 230 30.DateTime-Part5-Formatting

    Lecture 231 31.ExceptionHandling

    Lecture 232 32. None

    Lecture 233 33. Random

    Lecture 234 34. Functions-Part1-Introduction

    Lecture 235 35. Functions-Part2-ScopeOfVariable

    Lecture 236 36. Functions-Part3-Arguments

    Lecture 237 37.Functions-Part4-DocStrings

    Lecture 238 38. Lambda

    Lecture 239 39. Map

    Lecture 240 40. Reduce

    Lecture 241 41. Recursion

    Lecture 242 42. Generators

    Lecture 243 43. Decorators

    Section 9: 9. Big Data Fundamentals

    Lecture 244 1. IntroductionToBigData

    Lecture 245 2. Evolution Of Big Data

    Lecture 246 3. Distributed Computing

    Lecture 247 4. Features

    Lecture 248 5. Hadoop Ecosystem

    Lecture 249 6. TypesOfProcessing

    Section 10: 10.Databricks & PySpark

    Lecture 250 1. IntroductionToDatabricksAndPyspark

    Lecture 251 2. Introduction To Apache Spark

    Lecture 252 3. SparkComponents And API

    Lecture 253 4. Spark Architecture

    Lecture 254 5. RDD

    Lecture 255 6. Create RDD from List

    Lecture 256 7. Control Partitions In RDD

    Lecture 257 8. CreateRDDfromTextfile

    Lecture 258 9. Transformations On RDD

    Lecture 259 10. Lineage Graph

    Lecture 260 11. Understanding DAG fundamentals

    Lecture 261 12. Mapreduce Working

    Lecture 262 13. ReduceByKey Vs ReduceByKey Locally

    Lecture 263 14. GroupByKey

    Lecture 264 15. Filter Transformation On RDD

    Lecture 265 16. SortBy&SortByKeyTransformationsOnRDD

    Lecture 266 017. Extract Top Bottom From RDD

    Lecture 267 18. Save RDD as Textfile

    Lecture 268 19. Coalesce And Repartition On RDD

    Lecture 269 20. IntroductionToAccumulators

    Lecture 270 21. Implementing Accumulators

    Lecture 271 22. Broadcast Variables

    Lecture 272 23. Introduction To Dataframes

    Lecture 273 24. ReadCSVInDataframe

    Lecture 274 25. DataFrameInsights

    Lecture 275 26. SelectColumnsFromDataFrame

    Lecture 276 27. Add Modify Columns In DataFrame

    Lecture 277 28. Drop Columns In DataFrame

    Lecture 278 29. RenameColumnsInDataFrame

    Lecture 279 30. SortColumnsInDataFrame

    Lecture 280 31. FilterDataInDataFrame

    Lecture 281 32. RemoveDuplicatesFromDataFrame

    Lecture 282 33. CombineDataFrames

    Lecture 283 34. PatternBasedFiltersInDataframe

    Lecture 284 35. AddColumnOnBasisOfConditionInPyspark

    Lecture 285 36. CaseConversionInDataFrame

    Lecture 286 37. AggregationsOnDataFrame

    Lecture 287 38. AggregationsWithGroupBy

    Lecture 288 39.Pivot&UnpivotOnDataFrame

    Lecture 289 40. WindowFunctions

    Lecture 290 41. FillNullValuesInDataFrame

    Lecture 291 42. ReadCSVoptions

    Lecture 292 43. ImposeSchemaOnDataFrame

    Lecture 293 44. WriteModesInDataFrame

    Lecture 294 45. DateFunctions

    Lecture 295 46. ConvertRddtoDFandViceVersa

    Lecture 296 47. Explode

    Lecture 297 48. WorkingWithArraytypeColumn

    Lecture 298 49. dbutils

    Lecture 299 50. AccessADLSgen2UsingAccessKey

    Lecture 300 51. SignUpForAzureDatabricks

    Lecture 301 52. Widgets

    Lecture 302 53. CallingOtherNotebooks

    Lecture 303 54. ReadJsonFiles

    Lecture 304 55. ReadMultipleFilesAndGetFileNames

    Lecture 305 56. ParquetFileFormat

    Lecture 306 57. AccessADLSusingSAStoken

    Lecture 307 58. AccessADLSusingOAUTH

    Lecture 308 59. Read&WriteParquetFiles

    Lecture 309 60. DeltaFormat

    Lecture 310 61. CreateTempViews

    Lecture 311 62. CreateManagedAndUnManagedTables

    Lecture 312 63. Partitioning

    Lecture 313 64. Bucketing

    Lecture 314 65. ControlNumberOfRecordsWhileWriting

    Lecture 315 66. MaxPartitionBytes

    Lecture 316 67. SparkQueryExecutionPlans

    Lecture 317 68. Joins

    Lecture 318 69. SparkExecutionPlansForTransformations

    Lecture 319 70. BroadCastHashJoinAlgorithm

    Lecture 320 71. SortMergeJoinAlgorithm

    Lecture 321 72. ShuffleHashJoinAlgorithm

    Lecture 322 73. SortMergeBucketJoin

    Lecture 323 74. JoinHints

    Lecture 324 75. SparkSQL

    Lecture 325 76. SparkMemoryManagement

    Lecture 326 77. GarbageCollection

    Lecture 327 78. CPUTerminologies

    Lecture 328 79. DatabricksCompute&Clusters

    Lecture 329 80. ClusterManager

    Lecture 330 81. ResourceAllocation

    Lecture 331 82. DynamicAllocation

    Lecture 332 83. SerializationAndDeserialization

    Lecture 333 84. CacheAndPersist

    Lecture 334 85. HashFunctions

    Section 11: 11.DeltaLake & Lakehouse

    Lecture 335 1.HistoryOfDataArchitectures

    Lecture 336 2. IntroductionToDeltaLake

    Lecture 337 3. ReadAndWriteDeltaFormat

    Lecture 338 4. UnderstandingDeltaLog

    Lecture 339 5. VersionHistoryAndTimeTravel

    Lecture 340 6. CheckPointing

    Lecture 341 7. CreateDeltaTable

    Lecture 342 8. GeneratedColumns

    Lecture 343 9. CreatePartitionedTable

    Lecture 344 10. SchemaEvolution

    Lecture 345 11. CopyInto

    Lecture 346 12. Merge

    Lecture 347 13. ColumnStatistics

    Lecture 348 14.Optimize-Vaccum-Zorder

    Lecture 349 15. LiquidClustering

    Lecture 350 16. ChangeDataFeed

    Lecture 351 17. ReorgTable

    Lecture 352 18. DeletionVectors

    Lecture 353 19.SCD-Type 1

    Lecture 354 20.SCD-Type 2

    Section 12: 12.Databricks

    Lecture 355 1.HiveMetaStore

    Lecture 356 2. IntroductionToUnityCatalog

    Lecture 357 3. SettingUpUnityCatalog

    Lecture 358 4.CreateCatalog, Schema & Table

    Lecture 359 5. Autoloader

    Section 13: 13.Spark Structured Streaming

    Lecture 360 1.SparkStructuredSteaming-Introduction

    Lecture 361 2. ReadStream

    Lecture 362 3. WriteStream

    Lecture 363 4. OutputModes

    Lecture 364 5.Sources&Sinks

    Lecture 365 6. Triggers

    Lecture 366 7. Joins

    Lecture 367 8. Stateful Vs Stateless

    Lecture 368 9. WindowOperations

    Section 14: 14. Azure synapse analytics

    Lecture 369 1.IntroductionToAzureSynapseAnalytics

    Lecture 370 2.SQL Pools

    Lecture 371 3. DedicatedSQLPool

    Lecture 372 4. ServerlessSQLPool

    Lecture 373 5. DistributionTypes

    Lecture 374 6.ProvisionAzureSynapseAnalytics

    Lecture 375 7. WorkingWithServerlessSQLPool

    Section 15: 15. End-to-end project

    Lecture 376 1. Introduction

    Lecture 377 2. UnderstandingRequirements

    Lecture 378 3. PurchaseDataModel

    Lecture 379 4. SalesModel

    Lecture 380 5. HRModel

    Lecture 381 6. ResourceSetUp

    Lecture 382 7. GettingStartedWithAzureDevops

    Lecture 383 8. UnderstandingDataSource

    Lecture 384 9. GettingDatabricksReady

    Lecture 385 10. DevelopingPurchaseNotebooks

    Lecture 386 11. DevelopingPurchaseModel-Part2

    Lecture 387 12. TaskPlanning

    Lecture 388 13.DevelopingPurchaseBronzeNotebooks

    Lecture 389 14.FirstDemo

    Lecture 390 15.DevelopingSilverNotebooks-Part1

    Lecture 391 16.DevelopingSilverAndOtherNotebooks

    Lecture 392 17.DevelopingOtherAndSilverNotebooks-Part2

    Lecture 393 18. CreatingRawAndBronzeSalesNotebooks

    Lecture 394 19.CreatingSalesSilverNotebooks-Part1

    Lecture 395 020.CreatingSalesSilverNotebookPart2

    Lecture 396 021.CreatingHrModelNotebooks

    Lecture 397 22. DevelopingDatabricksWorkflows

    Anyone can enroll this course from beginner, intermediate to architect level!,Anyone looking to transition into azure data engineering or existing data engineers looking to not just enhance their skillset but also learn in depth.