Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    2023 Numpy, Pandas And Matplotlib A-Z™: For Machine Learning

    Posted By: ELK1nG
    2023 Numpy, Pandas And Matplotlib A-Z™: For Machine Learning

    2023 Numpy, Pandas And Matplotlib A-Z™: For Machine Learning
    Last updated 1/2023
    MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
    Language: English | Size: 4.30 GB | Duration: 11h 43m

    Python NumPy, Pandas, and Matplotlib for Data Analysis, Data Science and Machine Learning. Pre-machine learning Analysis

    What you'll learn

    Go from absolute beginner to become a confident Python NumPy, Pandas and Matplotlib user

    Dare to get the most out of Python NumPy, Pandas and Matplotlib

    Go deeper to understand complex topics in Python NumPy, Pandas and data visualisation

    Learn Python NumPy, Pandas and Matplotlib through several exercises and solutions

    Acquire the required Python NumPy, Pandas and Matplotlib knowledge you need to excel in Data Science, Machine Learning, Ai and Deep Learning

    Be trained by expert

    Requirements

    Just a little knowledge of Python

    Description

    Welcome to NumPy, Pandas and Matplotlib A-Z™: for Machine LearningNumPy is a leading scientific computing library in Python while Pandas is for data manipulation and analysis. Also, learn to use Matplotlib for data visualization. Whether you are trying to go into Data Science, dive into machine learning, or deep learning, NumPy and Pandas are the top Modules in Python you should understand to make the journey smooth for you. In this course, we are going to start from the basics of Python NumPy and Pandas to the advanced NumPy and Pandas. This course will give you a solid understanding of NumPy, Pandas, and their functions.At the end of the course, you should be able to write complex arrays for real-life projects, manipulate and analyze real-world data using Pandas.WHO IS THIS COURSE FOR?  √ This course is for you if you want to learn NumPy, Pandas, and Matplotlib for the first time or get a deeper knowledge of NumPy and Pandas to increase your productivity with deep and Machine learning.√ This course is for you if you are coming from other programming languages and want to learn Python NumPy and Pandas fast and know it really well.√ This course is for you if you are tired of NumPy,  Pandas, and Matplotlib courses that are too brief, too simple, or too complicated.√ This course is for you if you want to build real-world applications using NumPy or Panda and visualize them with Matplotlib.√ This course is for you if you have to get the prerequisite knowledge to understanding Data Science and Machine Learning using NumPy and Pandas.√ This course is for you if you want to master the in-and-out of NumPy, Pandas, and data visualization.√ This course is for you if you want to learn NumPy and Pandas by doing exciting real-life challenges that will distinguish you from the crowd.√ This course is for you if plan to pass an interview soon.

    Overview

    Section 1: NumPy - Setups

    Lecture 1 Course Syllabus Walkthrough

    Lecture 2 Installing Jupiter Notebook

    Lecture 3 Installing of NumPy

    Lecture 4 Importing NumPy

    Section 2: NumPy - Introduction

    Lecture 5 What is NumPy

    Lecture 6 What is Arrray

    Lecture 7 Types of Array

    Lecture 8 What is Dimension

    Lecture 9 Exploring - Row Before Column - Why?

    Lecture 10 Identifying an Array

    Lecture 11 Scalar vs Vector vs Matrix vs Tensor

    Section 3: NumPy - Creating Arrays

    Lecture 12 First Time Creating an Array

    Lecture 13 Creating an Array from a Tuple

    Lecture 14 Creating a Zero Dimensional Array

    Lecture 15 Avoiding Errors of "Multiple Arguments"

    Lecture 16 Creating a 1-D Array

    Lecture 17 Creating a 2-D Array

    Lecture 18 Creating a 3-D Array

    Section 4: NumPy - Data Type

    Lecture 19 Understanding NumPy Data Type

    Lecture 20 Forcing a Data Type of an Array

    Section 5: NumPy - Challenges and Solution - Creating Arrays

    Lecture 21 The Challenges

    Lecture 22 The Challenges - text

    Lecture 23 Solution to Challenge 1a

    Lecture 24 Solution to Challenge 1b

    Lecture 25 Solution to Challenge 1c

    Lecture 26 Solution to Challenge 1d

    Lecture 27 Solution to Challenge 1e

    Lecture 28 Solution to Challenge 2a

    Lecture 29 Solution to Challenge 2b

    Lecture 30 Solution to Challenge 2c

    Lecture 31 Solution to Challenge 2d

    Lecture 32 Solution to Challenge 2e

    Lecture 33 Solution to Challenge 2f

    Section 6: NumPy - Creating Arrays - (Others)

    Lecture 34 Array of Zeros

    Lecture 35 Arrays of Ones

    Lecture 36 Empty Arrays

    Lecture 37 How to use arange()

    Lecture 38 How to use linspace()

    Lecture 39 How to use reshape()

    Section 7: NumPy - Attributes of an Array

    Lecture 40 How to find the attributes of an Array - (ndim, shape, size, dtype, itemsize)

    Section 8: NumPy - Challenges and Solutions - Creating Arrays (More)

    Lecture 41 The Challenges

    Lecture 42 The Challenges - Text

    Lecture 43 Solution to Challenge 1a

    Lecture 44 Solution to Challenge 1b

    Lecture 45 Solution to Challenge 1c

    Lecture 46 Solution to Challenge 2a

    Lecture 47 Solution to Challenge 2b

    Lecture 48 Solution to Challenge 2c

    Lecture 49 Solution to Challenge 2d

    Lecture 50 Solution to Challenge 2e

    Lecture 51 Solution to Challenge 2f

    Lecture 52 Solution to Challenge #3

    Lecture 53 Solution to Challenge #4

    Section 9: NumPy - Array Sorting and Concatenation

    Lecture 54 Array Sorting

    Lecture 55 Array Concatenation

    Section 10: NumPy - 1-D Array Indexing and Slicing

    Lecture 56 Understanding how indexing and Slicing work on 1-D Arrays

    Section 11: NumPy - Challenges and Solution - 1-D Array Indexing & Slicing

    Lecture 57 The Challenges

    Lecture 58 The Challenges - Text

    Lecture 59 Solution to Challenge 1a

    Lecture 60 Solution to Challenge 1b

    Lecture 61 Solution to Challenge 1c

    Lecture 62 Solution to Challenge 1d

    Lecture 63 Solution to Challenge 1e

    Lecture 64 Solution to Challenge 1f

    Lecture 65 Solution to Challenge 1g

    Lecture 66 Solution to Challenge 1h

    Lecture 67 Solution to Challenge 1i

    Lecture 68 Solution to Challenge 1j

    Lecture 69 Solution to Challenge 1k

    Lecture 70 Solution to Challenge 1l

    Lecture 71 Solution to Challenge 1m

    Section 12: NumPy - Creating an Array from Existing Array

    Lecture 72 With Less Than, Greater Than or Equal To

    Lecture 73 Even and Odd Numbers

    Lecture 74 Two Conditions

    Section 13: NumPy - Challenges and Solutions - Creating an Array from Existing Array

    Lecture 75 The Challenges

    Lecture 76 The Challenges - Text

    Lecture 77 Solution to Challenge #1

    Lecture 78 Solution to Challenge #2

    Lecture 79 Solution to Challenge #3

    Lecture 80 Solution to Challenge #4

    Lecture 81 Solution to Challenge #5

    Section 14: NumPy - 2-D Array Indexing and Slicing

    Lecture 82 Selecting Elements of 2-D Array

    Lecture 83 Slicing In 2-D Array

    Section 15: NumPy - Challenges and Solution - 2-D Array Indexing & Slicing

    Lecture 84 The Challenges

    Lecture 85 The Challenges - Text

    Lecture 86 Solution to Challenge #1

    Lecture 87 Solution to Challenge #2

    Lecture 88 Solution to Challenge #3

    Lecture 89 Solution to Challenge #4

    Lecture 90 Solution to Challenge #5

    Lecture 91 Solution to Challenge #6

    Lecture 92 Solution to Challenge #7

    Section 16: NumPy - 3D Indexing and Slicing

    Lecture 93 Selecting Elements of 3-D Array

    Lecture 94 Slicing a 3-D Array

    Lecture 95 More on Slicing

    Section 17: NumPy - Challenges and Solution - 3-D Array Indexing & Slicing

    Lecture 96 The Challenges

    Lecture 97 The Challenges - Text

    Lecture 98 Solution to Challenge #1

    Lecture 99 Solution to Challenge #2

    Lecture 100 Solution to Challenge #3

    Lecture 101 Solution to Challenge #4

    Lecture 102 Solution to Challenge #5

    Lecture 103 Solution to Challenge #6

    Lecture 104 Solution to Challenge #7

    Lecture 105 Solution to Challenge #8

    Lecture 106 Solution to Challenge #9

    Lecture 107 Solution to Challenge #10

    Lecture 108 Solution to Challenge #11

    Lecture 109 Solution to Challenge #12

    Lecture 110 Solution to Challenge #13

    Lecture 111 Solution to Challenge #14

    Lecture 112 Solution to Challenge #15

    Lecture 113 Solution to Challenge #16

    Lecture 114 Solution to Challenge #17

    Section 18: NumPy - Summary - Selecting Element From Any n-D Array

    Lecture 115 Summary on Selecting Element From any Dimensional Array

    Section 19: NumPy - Array Flatten and Ravel

    Lecture 116 Understanding Array Flatten and Ravel

    Section 20: NumPy - Transpose

    Lecture 117 Understanding Array Transpose

    Section 21: NumPy - Reverse

    Lecture 118 Understanding How to Reverse an Array

    Lecture 119 Understanding How to Reverse Along an Axis

    Section 22: NumPy - Unique Array

    Lecture 120 Creating a Unique Array

    Lecture 121 Indexing a Unique Array

    Section 23: NumPy - Maximum, Minimum and Sum of an Array

    Lecture 122 Minimum, Maximum & Sum

    Lecture 123 Minimum, Maximum and Sum Along an Axis

    Section 24: NumPy - Stacking

    Lecture 124 Array Stacking

    Section 25: NumPy - Splitting an Array

    Lecture 125 Splitting an Array

    Lecture 126 Splitting an Array on a Specific Column

    Section 26: NumPy - Copying an Array

    Lecture 127 Understand how to Copy an Array

    Lecture 128 Understand how to Copy an Array II

    Section 27: NumPy - Array Operators

    Lecture 129 Understanding Array Operators

    Section 28: NumPy - Deleting Elements

    Lecture 130 How to delete Array Element I

    Lecture 131 How to delete Array Element II

    Lecture 132 Challenge & Solution I

    Lecture 133 Challenge & Solution II

    Lecture 134 Challenge & Solution III

    Lecture 135 Challenge & Solution III - Code

    Lecture 136 Challenge Yourself

    Lecture 137 Solution - Challenge Yourself

    Section 29: NumPy - Appending and Inserting Elements Into an Array

    Lecture 138 How to append & Insert an Element Into An Array

    Lecture 139 How to append & Insert Elements Into An Array

    Section 30: NumPy - Newaxis

    Lecture 140 Understanding Newaxis

    Section 31: NumPy - Trigonometric Function

    Lecture 141 Understanding NumPy Trigonometric Function

    Lecture 142 Understanding NumPy Trigonometric Function

    Section 32: NumPy - Searching Array

    Lecture 143 Understanding How to Search an Array

    Section 33: NumPy - Array Multiplication

    Lecture 144 Array Multiplication by a Single Number

    Lecture 145 Understanding dot()

    Lecture 146 Challenge & Solution

    Section 34: NumPy - Trace

    Lecture 147 Understanding Trace

    Lecture 148 Challenge & Solution

    Section 35: NumPy - Outer Product

    Lecture 149 Understanding Outer Product

    Lecture 150 Challenge & Solution

    Section 36: NumPy - Inner Product

    Lecture 151 Understanding Inner Product

    Section 37: NumPy - Cross Product

    Lecture 152 Understanding Cross Product

    Lecture 153 Challenge & Solution - I

    Lecture 154 Challenge & Solution - II

    Section 38: NumPy - Kronecker Product

    Lecture 155 Understanding Kronecker Product

    Section 39: NumPy - Determinant

    Lecture 156 Understanding Determinant

    Lecture 157 Challenge & Solution - 2 by 2

    Lecture 158 Challenge & Solution - 3 by 3

    Section 40: NumPy - Inverse of Array

    Lecture 159 Understanding Inverse of Array

    Lecture 160 Challenge & Solution

    Section 41: NumPy - Condition Number

    Lecture 161 Understanding the Condition Number

    Section 42: NumPy - Random Sub-Module

    Lecture 162 Random Number (Integer)

    Lecture 163 Random Number (Float)

    Lecture 164 Random Arrays

    Lecture 165 Random Choice

    Lecture 166 Choice with 2-D and 3-D Array

    Section 43: NumPy - Seed

    Lecture 167 Understanding Random Seed

    Lecture 168 Random Seed With Choice()

    Section 44: NumPy - Data Distribution

    Lecture 169 What is Data Distribution?

    Lecture 170 What is Random Distribution?

    Lecture 171 Random Distribution 2-D and 3-D Array

    Section 45: NumPy - Data Visualisation

    Lecture 172 NumPy vs MatPlotLib vs Seaborn

    Lecture 173 Installation of MatPlotLib and Seaborn

    Lecture 174 Challenge & Solution 1

    Lecture 175 Challenge & Solution II

    Section 46: NumPy - Normal Distribution & Visualisation

    Lecture 176 What is Normal Distribution

    Lecture 177 Normal Distribution Visualisation

    Section 47: NumPy - Binomial Distribution

    Lecture 178 Binomial Distribution

    Lecture 179 Binomial Data Visualisation

    Section 48: Pandas - Intro, Installation & DataFrame

    Lecture 180 Pandas Introduction

    Lecture 181 Pandas Installation & Import

    Lecture 182 Pandas DataFrame

    Section 49: Resources Used for Pandas

    Lecture 183 Happiness Data Set

    Lecture 184 Sales Data Set

    Lecture 185 Northwind Database

    Lecture 186 Cities Data Set

    Section 50: Pandas - Series

    Lecture 187 Understanding Pandas Series

    Section 51: Pandas - Label

    Lecture 188 Understanding Pandas Label

    Lecture 189 Creating Series From Dictionary

    Section 52: Pandas - DataFrame

    Lecture 190 Introduction to DataFrame in Pandas

    Lecture 191 Loc

    Lecture 192 Challenge & Solution

    Section 53: Pandas - Concatenation

    Lecture 193 Pandas - Understanding Concat in Pandas

    Lecture 194 Pandas - Understanding Concat in Pandas - Code

    Lecture 195 Pandas - Adding Hierarchy

    Lecture 196 Pandas - Adding Hierarchy - Code

    Lecture 197 Pandas - Concat Label

    Lecture 198 Pandas - Concat Label - Code

    Lecture 199 Pandas - Challenge & Solution

    Lecture 200 Pandas - Challenge & Solution - Code

    Lecture 201 Pandas - Concat Columns of Different Sizes

    Lecture 202 Pandas - Concat Columns of Different Sizes - Code

    Lecture 203 Pandas - Concat along axis

    Lecture 204 Pandas - Concat along axis - Code

    Section 54: Pandas - Merge

    Lecture 205 Pandas - Understanding Merge

    Lecture 206 Pandas - Understanding Merge - Code

    Lecture 207 Pandas - Merging DataFrame of Different Sizes

    Lecture 208 Pandas - Merging DataFrame of Different Sizes - Code

    Lecture 209 Pandas - Inner, Outer, Left and Right Join

    Lecture 210 Pandas - Inner, Outer, Left and Right Join - Code

    Lecture 211 Pandas - Merge Suffix

    Lecture 212 Pandas - Merge Suffix - Code

    Section 55: Pandas - Load CSV

    Lecture 213 Load CSV in Pandas

    Section 56: Pandas - Aggregate & Statistics (Min, Max, Sum, Mean, Median, Mode, Summary)

    Lecture 214 Pandas - Minimum and Maximum

    Lecture 215 Pandas - Minimum and Maximum - Singapore

    Lecture 216 Pandas - Mean, Median & Mode

    Lecture 217 Pandas - Mean, Median & Mode - Mexico

    Lecture 218 Pandas - Sum

    Lecture 219 Challenge & Solution

    Lecture 220 Pandas - Statistical Summary

    Lecture 221 Pandas - Count

    Section 57: Pandas - JSON

    Lecture 222 Pandas - Load JSON

    Section 58: Pandas - Challenges & Solutions

    Lecture 223 1 - Pandas Challenge & Solution - Import

    Lecture 224 2 - Pandas Challenge & Solution - Data Set Inspection - Shape, DataType & Column

    Lecture 225 3 - Challenge & Solution - Skip Rows Reading CSV File

    Lecture 226 3 - Challenge & Solution - Skip Rows Reading CSV File - Code

    Lecture 227 4 - Challenge & Solution - Skip Rows Keep Headers

    Lecture 228 4 - Challenge & Solution - Skip Rows Keep Headers - Code

    Lecture 229 5 - Challenge & Solution - Read CSV Without Header

    Lecture 230 5 - Challenge & Solution - Read CSV Without Header - Code

    Lecture 231 6 - Challenge & Solution - Subset of Column

    Lecture 232 6 - Challenge & Solution - Subset of Column - Code

    Lecture 233 7 - Challenge & Solution - Few Rows

    Lecture 234 7 - Challenge & Solution - Few Rows - Code

    Lecture 235 8 - Challenge & Solution - Few Rows, Few Columns

    Lecture 236 8 - Challenge & Solution - Few Rows, Few Columns - Code

    Lecture 237 9 - Challenge & Solution - Time to Import

    Lecture 238 9 - Challenge & Solution - Time to Import- Code

    Lecture 239 10 - Challenge & Solution - Changing Data Type

    Lecture 240 10 - Challenge & Solution - Changing Data Type - Code

    Section 59: Pandas - Challenges & Solutions

    Lecture 241 Pandas - Summary of Data Set

    Lecture 242 Pandas - Summary of Data Set - Code

    Lecture 243 Pandas - Subset of Column

    Lecture 244 Pandas - Subset of Column - Code

    Lecture 245 Pandas - Total number of Columns and Rows

    Lecture 246 Pandas - Total number of Columns and Rows - Code

    Lecture 247 Pandas - Last Ten Rows

    Lecture 248 Pandas - Last Ten Rows - Code

    Section 60: Pandas - Challenges & Solutions

    Lecture 249 Pandas - Difference between Loc and iloc

    Lecture 250 Pandas - Difference between Loc and iloc - more

    Lecture 251 Pandas - Difference between head and tail

    Lecture 252 Pandas - Difference between head and tail - Code

    Lecture 253 Pandas - Using Head, Loc & iLoc to Achieve the Same Result

    Lecture 254 Pandas - Using Head, Loc & iLoc to Achieve the Same Result - Code

    Lecture 255 Pandas - Using tail, loc and iloc for last row

    Lecture 256 Pandas - Using tail, loc and iloc for last row - Code

    Section 61: Pandas - Challenges & Solutions

    Lecture 257 Pandas - iloc & loc

    Lecture 258 Pandas - iloc & loc - code

    Lecture 259 Pandas - Without Using Tail or iLoc Get Last Row

    Lecture 260 Pandas - Without Using Tail or iLoc Get Last Row - Code

    Lecture 261 Pandas - Using Range

    Lecture 262 Pandas - Using Range - Code

    Lecture 263 Pandas - Another Selection Trick

    Lecture 264 Pandas - Another Selection Trick - Code

    Section 62: Pandas - Challenges & Solutions

    Lecture 265 Pandas - Even Columns

    Lecture 266 Pandas - Even Columns - Code

    Lecture 267 Pandas - Even Columns Without Using Range

    Lecture 268 Pandas - Even Columns Without Using Range - Code

    Lecture 269 Pandas - Specific Row

    Lecture 270 Pandas - Specific Row - Code

    Lecture 271 Pandas - Column

    Lecture 272 Pandas - Column - Code

    Lecture 273 Pandas - Filtering Greater Than

    Lecture 274 Pandas - Filtering Greater Than - Code

    Lecture 275 Pandas - Filtering Greater Than with Fewer Rows

    Lecture 276 Pandas - Filtering Greater Than with Fewer Rows - Code

    Section 63: Pandas - Challenges & Solutions

    Lecture 277 Pandas - nlargest

    Lecture 278 Pandas - nlargest - Code

    Lecture 279 Pandas - nsmallest

    Lecture 280 Pandas - nsmallest - Code

    Lecture 281 Pandas - Sort_Values Ascending

    Lecture 282 Pandas - Sort_Values Ascending - Code

    Lecture 283 Pandas - Sort_Values for Smallest

    Lecture 284 Pandas - Sort_Values for Smallest - Code

    Lecture 285 Pandas - Selecting a range of values

    Lecture 286 Pandas - Selecting a range of values - Code

    Lecture 287 Pandas - Return Random Rows

    Lecture 288 Pandas - Return Random Rows - Code

    Section 64: Pandas - Challenges & Solutions

    Lecture 289 Pandas - Reset Index

    Lecture 290 Pandas - Reset Index - Code

    Lecture 291 Pandas - Greater than 0.1

    Lecture 292 Pandas - Greater than 0.1 - Code

    Lecture 293 Pandas - Selecting with given Columns and Rows

    Lecture 294 Pandas - Selecting with given Columns and Rows - Code

    Lecture 295 Pandas - Selecting Data with Loc & Slicing

    Lecture 296 Pandas - Selecting Data with Loc & Slicing - Code

    Lecture 297 Pandas - Many ways of Retrieving Column

    Lecture 298 Pandas - Many ways of Retrieving Column - Code

    Lecture 299 Pandas - Select Data related to Singapore

    Lecture 300 Pandas - Select Data related to Singapore - Code

    Lecture 301 Pandas - Select years after 2019

    Lecture 302 Pandas - Select years after 2019 - Code

    Lecture 303 Pandas - Generosity between two values

    Lecture 304 Pandas - Generosity between two values - Code

    Lecture 305 Pandas - Life expectancy below 40

    Lecture 306 Pandas - Life expectancy below 40 - Code

    Lecture 307 Pandas - Using columns to set condition

    Lecture 308 Pandas - Using columns to set condition - Code

    Lecture 309 Pandas - Zimbabwe & Singapore

    Lecture 310 Pandas - Zimbabwe & Singapore - Code

    Section 65: Pandas - Data Cleaning

    Lecture 311 Introduction

    Lecture 312 Pandas - Checking for NaN

    Lecture 313 Pandas - Checking for NaN - Code

    Lecture 314 Pandas - Removing NaN

    Lecture 315 Pandas - Removing NaN - Code

    Lecture 316 Pandas - Removing NaN II

    Lecture 317 Pandas - Replacing NaN with a value

    Lecture 318 Pandas - Replacing NaN with a value - Code

    Lecture 319 Pandas - Replacing NaN in one Column

    Lecture 320 Pandas - Replacing NaN in one Column - Code

    Lecture 321 Pandas - Replacing NaN with mean, mode & median

    Lecture 322 Pandas - Data Cleaning - Sales

    Lecture 323 Pandas - Data Cleaning - Sales -Code

    Section 66: Pandas - GroupBy

    Lecture 324 Pandas - GroupBy Intro

    Lecture 325 Pandas - GroupBy Intro - Code

    Lecture 326 Pandas - GroupBy Challenge & Solution

    Lecture 327 Pandas - GroupBy Challenge & Solution - Code

    Section 67: Pandas with SQL

    Lecture 328 Installation, Connection & Import

    Lecture 329 Installation, Connection & Import - Code

    Lecture 330 Importing Fewer Columns From SQL to Pandas

    Lecture 331 Importing Fewer Columns From SQL to Pandas - Code

    Lecture 332 Querying SQL Database from Pandas

    Lecture 333 Querying SQL Database from Pandas - Code

    Lecture 334 Creating Table in SQL from Pandas

    Lecture 335 Creating Table in SQL from Pandas - Code

    Lecture 336 read_sql() method - A two in one Method

    Lecture 337 read_sql() method - A two in one Method - Code

    Section 68: Pandas with Excel

    Lecture 338 Pandas - Importing Excel File

    Lecture 339 Pandas - Importing Excel File - Code

    Lecture 340 Pandas - Cleaning Excel Data Set While Importing

    Lecture 341 Pandas - Cleaning Excel Data Set While Importing - Code

    Lecture 342 Pandas - Saving an Excel File

    Lecture 343 Pandas - Saving an Excel File - Code

    Lecture 344 Pandas _ Save Excel File Without Index

    Lecture 345 Pandas _ Save Excel File Without Index - Code

    Lecture 346 Pandas - Shifting an Excel Sheet

    Lecture 347 Pandas - Shifting an Excel Sheet - Code

    Section 69: Matplotlib - Introduction

    Lecture 348 Matplotlib - What is Matplotlib

    Lecture 349 Matplotlib - Installation

    Section 70: Matplotlib - Plot

    Lecture 350 Matplotlib - Understaning Plot

    Lecture 351 Matplotlib - Understaning Plot

    Lecture 352 Matplotlib - dot, x, square

    Lecture 353 Matplotlib - dot, x, square - Code

    Lecture 354 Matplotlib - Plotting Multiple Points

    Lecture 355 Matplotlib - Plotting Multiple Points - Code

    Lecture 356 Matplotlib - Plotting Without x-axis

    Lecture 357 Matplotlib - Plotting Without x-axis - Code

    Section 71: Matplotlib - Markers

    Lecture 358 Matplotlib - Understanding Markers

    Lecture 359 Matplotlib - Format String

    Lecture 360 Matplotlib - Marker Size

    Lecture 361 Matplotlib - Marker Colour

    Lecture 362 Matplotlib - Range of Marker Colours

    Section 72: Matplotlib - Line

    Lecture 363 Matplotlib - Line Style

    Lecture 364 Matplotlib - Line Colours

    Lecture 365 Matplotlib - Line Width

    Lecture 366 Matplotlib - Multiple Lines

    Lecture 367 Matplotlib - Multiple Lines More

    Section 73: Matplotlib - Figure

    Lecture 368 Matplotlib - Understanding Figure

    Section 74: Matplotlib - Label & Title

    Lecture 369 Matplotlib - Loc

    Lecture 370 Matplotlib - Label

    Lecture 371 Matplotlib - Title

    Lecture 372 Matplotlib - Font Properties

    Section 75: Matplotlib - Legend

    Lecture 373 Matplotlib - Understanding Legend

    Lecture 374 Matplotlib - Understanding Legend - More

    Lecture 375 Matplotlib - Legend Repositioning

    Lecture 376 Matplotlib - Legend Outside

    Section 76: Matplotlib - Grid

    Lecture 377 Matplotlib - Understanding Grid

    Lecture 378 Matplotlib - Grid Properties

    Section 77: Matplotlib - SubPlot

    Lecture 379 Matplotlib - Understanding Subplot

    Lecture 380 Matplotlib - Understanding Subplot - More

    Lecture 381 Matplotlib - Subplot title and Super title

    Section 78: Matplotlib - Scatter Plot

    Lecture 382 Matplotlib - Understanding Scatter Plot

    Lecture 383 Matplotlib - Scatter Plot - Colour Dots

    Lecture 384 Matplotlib - Scatter Plot - Size of Dots

    Lecture 385 Matplotlib - Scatter Plot - Size of Dots - Code

    Lecture 386 Matplotlib - Scatter Plot - Colour Map

    Lecture 387 Matplotlib - Scatter Plot - Colour Map - Code

    Lecture 388 Matplotlib - Scatter Plot - Alpha

    Lecture 389 Matplotlib - Scatter Plot - Groups

    Lecture 390 Matplotlib - Scatter Plot - Groups - Code

    Lecture 391 Matplotlib - Scatter Plot - 20 Random Circles

    Section 79: Matplotlib - Pie

    Lecture 392 Matplotlib - Introduction to Pie Chart

    Lecture 393 Matplotlib - Pie - Label

    Lecture 394 Matplotlib - Pie - Legend

    Lecture 395 Matplotlib - Pie - Legend | Title

    Lecture 396 Matplotlib - Pie - Explode

    Lecture 397 Matplotlib - Shadow for Widget

    Lecture 398 Matplotlib - Pie - Colour

    Section 80: Matplotlib - Bar

    Lecture 399 Matplotlib - Understanding Bar Chart

    Lecture 400 Matplotlib - Bar - Increasing & Reducing Font Size

    Lecture 401 Matplotlib - Bar - Increasing & Reducing Font Size - Code

    Lecture 402 Matplotlib - Bar - Changing Specific Bar Colour

    Lecture 403 Matplotlib - Bar - Changing Specific Bar Colour - Code

    Section 81: Matplotlib - 3D

    Lecture 404 Matplotlib - 3D - Introduction

    Lecture 405 Matplotlib - 3D - Introduction - Code

    Lecture 406 Matplotlib - 3D with Scatter Plot

    Lecture 407 Matplotlib - 3D with Scatter Plot - Code

    Section 82: Matplotlib - Trigonometric Plotting

    Lecture 408 Understanding Trigonometric (Sin, Cos & Tan) Plotting

    Lecture 409 Understanding Trigonometric (Sin, Cos & Tan) Plotting - Code

    Section 83: Matplotlib - Challenges & Solutions - Lines

    Lecture 410 Challenge & Solution - 1

    Lecture 411 Challenge & Solution - 1 - Code

    Lecture 412 Challenge & Solution - 2

    Lecture 413 Challenge & Solution - 2 - Code

    Lecture 414 Challenge & Solution - 3

    Lecture 415 Challenge & Solution - 3 - Code

    Lecture 416 Challenge & Solution - 4

    Lecture 417 Challenge & Solution - 4 - Code

    Lecture 418 Challenge & Solution - 5

    Lecture 419 Challenge & Solution - 5 - Code

    Lecture 420 Challenge & Solution - 6

    Lecture 421 Challenge & Solution - 6- Code

    Section 84: Matplotlib - Challenge & Solution - Figure

    Lecture 422 Challenge & Solution

    Lecture 423 Challenge & Solution - Code

    Section 85: Matplotlib - Challenge & Solution - Subplot

    Lecture 424 Challenge & Solution

    Lecture 425 Challenge & Solution - Code

    Section 86: Matplotlib - Challenges & Solutions - Bar Chart

    Lecture 426 Challenge & Solution - 1

    Lecture 427 Challenge & Solution - 1 - Code

    Lecture 428 Challenge & Solution - 2

    Lecture 429 Challenge & Solution - 2 - Code

    Lecture 430 Challenge & Solution - 3

    Lecture 431 Challenge & Solution - 3 - Code

    Lecture 432 Challenge & Solution - 4

    Lecture 433 Challenge & Solution - 4 - Code

    Section 87: Matplotlib - Challenges & Solution - Pie Chart

    Lecture 434 Challenge & Solution - 1

    Lecture 435 Challenge & Solution - 1 - Code

    Lecture 436 Challenge & Solution - 2

    Lecture 437 Challenge & Solution - 2 - Code

    Lecture 438 Challenge & Solution - 3

    Lecture 439 Challenge & Solution - 3 - Code

    Section 88: Matplotlib - Challenge & Solution - 3D

    Lecture 440 Challenge & Solution

    Lecture 441 Challenge & Solution - Code

    Section 89: Matplotlib - More Challenges & Solutions

    Lecture 442 Challenge & Solution - 1

    Lecture 443 Challenge & Solution - 1 - Code

    Lecture 444 Challenge & Solution - 2

    Lecture 445 Challenge & Solution - 2 - Code

    Section 90: Recommended Course

    Lecture 446 Mathematics, Probability & Statistics for Machine Learning

    Section 91: Bonus Section

    Lecture 447 Please check out my other courses

    All levels of students