Tags
Language
Tags
November 2024
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Introduction to Machine Learning with Python: A Guide for Beginners in Data Science [Kindle Edition]

Posted By: AlenMiler
Introduction to Machine Learning with Python: A Guide for Beginners in Data Science [Kindle Edition]

Introduction to Machine Learning with Python: A Guide for Beginners in Data Science by David James
English | August 24, 2018 | ASIN: B07GTPZ72K | 195 pages | AZW3 | 2.45 MB

Are you thinking of learning more about Machine Learning using Python?
This book is for you. It would seek to explain common terms and algorithms in an intuitive way. The authors used a progressive approach whereby we start out slowly and improve on the complexity of our solutions.
This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning.

From AI Sciences Publisher
Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.
To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations.

Target Users
The book designed for a variety of target audiences. The most suitable users would include:
  • Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field.
  • Software developers and engineers with a strong programming background but seeking to break into the field of machine learning.
  • Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird’s eye view of current techniques and approaches.

  • Overview of Python Programming Language
  • Statistics
  • Probability
  • The Data Science Process
  • Machine Learning
  • Supervised Learning Algorithms
  • Unsupervised Learning Algorithms
  • Semi-supervised Learning Algorithms
  • Reinforcement Learning Algorithms
  • Overfitting and Underfitting
  • Python Data Science Tools
  • Jupyter Notebook
  • Numerical Python (Numpy)
  • Pandas
  • Scientific Python (Scipy)
  • Matplotlib
  • Scikit-Learn
  • K-Nearest Neighbors
  • Naive Bayes
  • Simple and Multiple Linear Regression
  • Logistic Regression
  • Generalized Linear Models
  • Decision Trees and Random Forest
  • Neural Networks
  • Perceptrons
  • Backpropagation
  • Clustering
  • K-means with Scikit-Learn
  • Bottom-up Hierarchical Clustering
  • K-means Clustering
  • Network Analysis
  • Betweenness centrality
  • Eigenvector Centrality
  • Recommender Systems
  • Multi-Class Classification
  • Popular Classification Algorithms
  • Support Vector Machine
  • Deep Learning using TensorFlow
  • Deep Learning Case Studies

Frequently Asked Questions

Q: Is this book for me and do I need programming experience?
A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you’ll be OK.

Q: Does this book include everything I need to become a Machine Learning expert?
A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning.

Q: Can I have a refund if this book doesn’t fit for me?
A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email (email address inside the book).