Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    High Resolution Generative Adversarial Networks (GANs)

    Posted By: Sigha
    High Resolution Generative Adversarial Networks (GANs)

    High Resolution Generative Adversarial Networks (GANs)
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English (US) | Size: 8.85 GB | Duration: 7h 28m

    Photorealistic image generation with Python and TensorFlow 2.0

    What you'll learn
    Create a GAN capable of generating high resolution images using TensorFlow 2.0
    Distribute training on a TPU or multiple GPUS
    Implement the R2 loss function
    Implement a scaled convolutional layer
    Implement up-sampling and down-sampling layers
    Implement mini-batch standard deviation to capture dataset variation
    Generate infinite random images from a trained generator
    Apply a perceptual path length filter to generated images
    Generate interpolations between two different generated images

    Requirements
    Basic python experience
    Convolutional neural network experience (suggested)
    TensorFlow experience (suggested)

    Description
    This course covers the fundamentals necessary for a state-of-the-art GAN. Anyone who experimented with GANs on their own knows that it's easy to throw together a GAN that spits out MNIST digits, but it's another level of difficulty entirely to produce photorealistic images at a resolution higher than a thumbnail.This course comprehensively bridges the gap between MNIST digits and high-definition faces. You'll create and train a GAN that can be used in real-world applications.And because training high-resolution networks of any kind is computationally expensively, you'll also learn how to distribute your training across multiple GPUs or TPUs. Then for training, we'll leverage Google's TPU hardware for free in Google Colab. This allows students to train generators up to 512x512 resolution with no hardware costs at all.The material for this course was pulled from the ProGAN, StyleGAN, and StyleGAN 2 papers which have produced ground-breaking and awe-inspiring results. We'll even use the same Flicker Faces HD dataset to replicate their results.Finally, what GAN course would be complete without having some fun with the generator? Students will learn not only how to generate an infinite quantity of unique images, but also how to filter them to the highest-quality images by using a perceptual path length filter. You'll even learn how to generate smooth interpolations between two generated images, which make for some really interesting visuals.

    Who this course is for:
    Machine learning developers who want to create high resolution images with GANs


    High Resolution Generative Adversarial Networks (GANs)


    For More Courses Visit & Bookmark Your Preferred Language Blog
    From Here: English - Français - Italiano - Deutsch - Español - Português - Polski - Türkçe - Русский