Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    ELECTROMAGNETIC FIELDS FOR ENGINEERS AND SCIENTISTS

    Posted By: Free butterfly
    ELECTROMAGNETIC FIELDS FOR ENGINEERS AND SCIENTISTS

    ELECTROMAGNETIC FIELDS FOR ENGINEERS AND SCIENTISTS: Electrostatics, Magnetostatics, Time-Varying Fields and Maxwell's Equations by Demetrios P. Kanoussis Ph.D
    English | 2021 | ISBN: N/A | ASIN: B09GL7S1DT | 854 pages | PDF | 6.66 Mb

    The central theme in this book is the development of Maxwell’s equations, the fundamental equations of Electromagnetic fields. Newton’s equations in Mechanics and Maxwell’s equations in Electromagnetism are among the most influential equations in science and technology.
    For this reason, Electromagnetism is one of the most fundamental subjects in an engineering curriculum with a huge number of applications. Capacitors and inductors, transmission lines, radiating systems (antennas), microwaves, lasers, motion of charged particles in electric and magnetic fields, propagation of electromagnetic waves in various media, transmission of electromagnetic energy, just to mention a few, are investigated and analyzed by means of Maxwell’s equations.
    In this book we use the so called “historical approach” of developing Maxwell’s equations. We start with the relevant experimental laws, (Coulomb’s law, Gauss’s law, Biot-Savart law, Ampere’s circuital law, Faraday’s law of induction, etc), and gradually, step by step, build Maxwell’s equations. This method of approach has the advantage of introducing the student, gradually, not only to the pertinent physical laws but, also, to the mathematical methods and techniques, necessary for the manipulation of various problems in electromagnetism.
    For the interested reader, at the Appendix, we present "an axiomatic derivation" of Maxwell’s equations. Taking this approach, the totality of our knowledge and experience with electromagnetic phenomena is summarized into four postulates, which, in conjunction with the principle of conservation of energy, lead directly to Maxwell’s equations.
    The book contains 25 chapters, 245 fully solved examples and 867 problems for solution. Odd numbered problems are provided with answers. Chapter 1 is devoted to a brief, but systematic review of vectors and vector analysis. The three most commonly used coordinate systems, i.e. Cartesian, Cylindrical and Spherical, are presented in details. Expressions for the gradient, the divergence, the curl and the Laplacian in all coordinate systems are provided, and their physical significance is considered. The two fundamental theorems of vector analysis, i.e. the Gauss-Ostrogradsky theorem and the Stokes’ theorem (which are used frequently in this book), are presented and analyzed in dtails. The book is mathematically self- contained.
    The rest of the book is divided in three parts:
    Part A, (Chapters 2,…,12), Electrostatics
    Part B, (Chapters 13,…,23), Magnetostatics and
    Part C, (Chapters 24, 25), Time –Varying fields and Maxwell’s equations.
    The topics covered in the book are described in the Table of contents.
    At the end of each section is a set of fully solved examples, followed by a set of problems for solution. At the end of each chapter is an additional set of supplementary problems, (usually more difficult). The students are urged to study carefully the solved examples and solve the problems. This is essential to understanding the material covered in this book.
    A second volume, covering propagation of electromagnetic waves in various media, waveguides, transmission lines, simple radiating systems and many other applications of Maxwell's theory, is to be published in the near future.

    Feel Free to contact me for book requests, informations or feedbacks.
    Without You And Your Support We Can’t Continue
    Thanks For Buying Premium From My Links For Support