Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    Dynamic Analysis of Non-Linear Structures by the Method of Statistical Quadratization

    Posted By: fdts
    Dynamic Analysis of Non-Linear Structures by the Method of Statistical Quadratization

    Dynamic Analysis of Non-Linear Structures by the Method of Statistical Quadratization
    by M.G. Donley, Pol Spanos
    English | 1990 | ISBN: 3540527435 | 172 pages | PDF | 4.96 MB

    1 Introduction As offshore oil production moves into deeper water, compliant structural systems are becoming increasingly important. Examples of this type of structure are tension leg platfonns (TLP's), guyed tower platfonns, compliant tower platfonns, and floating production systems. The common feature of these systems, which distinguishes them from conventional jacket platfonns, is that dynamic amplification is minimized by designing the surge and sway natural frequencies to be lower than the predominant frequencies of the wave spectrum. Conventional jacket platfonns, on the other hand, are designed to have high stiffness so that the natural frequencies are higher than the wave frequencies. At deeper water depths, however, it becomes uneconomical to build a platfonn with high enough stiffness. Thus, the switch is made to the other side of the wave spectrum. The low natural frequency of a compliant platfonn is achieved by designing systems which inherently have low stiffness. Consequently, the maximum horizontal excursions of these systems can be quite large. The low natural frequency characteristic of compliant systems creates new analytical challenges for engineers. This is because geometric stiffness and hydrodynamic force nonlinearities can cause significant resonance responses in the surge and sway modes, even though the natural frequencies of these modes are outside the wave spectrum frequencies. High frequency resonance responses in other modes, such as the pitch mode of a TLP, are also possible.
    Download from:
    http://nitroflare.com/view/72FF5999F3982F7/stat-eng-3540527435.pdf