Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Deep Learning: Convolutional Neural Networks In Python

    Posted By: Sigha
    Deep Learning: Convolutional Neural Networks In Python

    Deep Learning: Convolutional Neural Networks In Python
    Last updated 3/2023
    MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
    Language: English | Size: 3.73 GB | Duration: 13h 21m

    Tensorflow 2 CNNs for Computer Vision, Natural Language Processing (NLP) +More! For Data Science & Machine Learning

    What you'll learn
    Understand convolution and why it's useful for Deep Learning
    Understand and explain the architecture of a convolutional neural network (CNN)
    Implement a CNN in TensorFlow 2
    Apply CNNs to challenging Image Recognition tasks
    Apply CNNs to Natural Language Processing (NLP) for Text Classification (e.g. Spam Detection, Sentiment Analysis)

    Requirements
    Basic math (taking derivatives, matrix arithmetic, probability) is helpful
    Python, Numpy, Matplotlib

    Description
    *** NOW IN TENSORFLOW 2 and PYTHON 3 ***Learn about one of the most powerful Deep Learning architectures yet!The Convolutional Neural Network (CNN) has been used to obtain state-of-the-art results in computer vision tasks such as object detection, image segmentation, and generating photo-realistic images of people and things that don't exist in the real world!This course will teach you the fundamentals of convolution and why it's useful for deep learning and even NLP (natural language processing).You will learn about modern techniques such as data augmentation and batch normalization, and build modern architectures such as VGG yourself.This course will teach you:The basics of machine learning and neurons (just a review to get you warmed up!)Neural networks for classification and regression (just a review to get you warmed up!)How to model image data in codeHow to model text data for NLP (including preprocessing steps for text)How to build an CNN using Tensorflow 2How to use batch normalization and dropout regularization in Tensorflow 2How to do image classification in Tensorflow 2How to do data preprocessing for your own custom image datasetHow to use Embeddings in Tensorflow 2 for NLPHow to build a Text Classification CNN for NLP (examples: spam detection, sentiment analysis, parts-of-speech tagging, named entity recognition)All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Tensorflow. I am always available to answer your questions and help you along your data science journey.This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.Suggested Prerequisites:matrix addition and multiplicationbasic probability (conditional and joint distributions)Python coding: if/else, loops, lists, dicts, setsNumpy coding: matrix and vector operations, loading a CSV fileWHAT ORDER SHOULD I TAKE YOUR COURSES IN?:Check out the lecture "Machine Learning and AI Prerequisite Roadmap" (available in the FAQ of any of my courses, including the free Numpy course)UNIQUE FEATURESEvery line of code explained in detail - email me any time if you disagreeNo wasted time "typing" on the keyboard like other courses - let's be honest, nobody can really write code worth learning about in just 20 minutes from scratchNot afraid of university-level math - get important details about algorithms that other courses leave out

    Who this course is for:
    Students, professionals, and anyone else interested in Deep Learning, Computer Vision, or NLP,Software Engineers and Data Scientists who want to level up their career


    Deep Learning: Convolutional Neural Networks In Python


    For More Courses Visit & Bookmark Your Preferred Language Blog
    From Here: English - Français - Italiano - Deutsch - Español - Português - Polski - Türkçe - Русский