Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Behavioral Program Synthesis with Genetic Programming

    Posted By: Underaglassmoon
    Behavioral Program Synthesis with Genetic Programming

    Behavioral Program Synthesis with Genetic Programming
    Springer | Computational Intelligence and Complexity | January 16, 2016 | ISBN-10: 3319275631 | 172 pages | pdf | 3.3 mb

    by Krzysztof Krawiec (Author)
    Recent research in Behavioral Program Synthesis with Genetic Programming
    Presents application of genetic programming
    Written by an expert in the field


    About this book
    Genetic programming (GP) is a popular heuristic methodology of program synthesis with origins in evolutionary computation. In this generate-and-test approach, candidate programs are iteratively produced and evaluated. The latter involves running programs on tests, where they exhibit complex behaviors reflected in changes of variables, registers, or memory. That behavior not only ultimately determines program output, but may also reveal its `hidden qualities' and important characteristics of the considered synthesis problem. However, the conventional GP is oblivious to most of that information and usually cares only about the number of tests passed by a program. This `evaluation bottleneck' leaves search algorithm underinformed about the actual and potential qualities of candidate programs.

    This book proposes behavioral program synthesis, a conceptual framework that opens GP to detailed information on program behavior in order to make program synthesis more efficient. Several existing and novel mechanisms subscribing to that perspective to varying extent are presented and discussed, including implicit fitness sharing, semantic GP, co-solvability, trace convergence analysis, pattern-guided program synthesis, and behavioral archives of subprograms. The framework involves several concepts that are new to GP, including execution record, combined trace, and search driver, a generalization of objective function. Empirical evidence gathered in several presented experiments clearly demonstrates the usefulness of behavioral approach. The book contains also an extensive discussion of implications of the behavioral perspective for program synthesis and beyond.

    Number of Illustrations and Tables
    10 illus., 15 in colour
    Topics
    Computational Intelligence
    Artificial Intelligence (incl. Robotics)
    Software Engineering / Programming and Operating Systems

    More info and Hardcover at Springer

    Donate to Support :)