Tags
Language
Tags
January 2025
Su Mo Tu We Th Fr Sa
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

A Solution Manual and Notes for: An Introduction to Statistical Learning

Posted By: Grev27
A Solution Manual and Notes for: An Introduction to Statistical Learning

John Weatherwax, "A Solution Manual and Notes for: An Introduction to Statistical Learning"
English | ASIN: B00JODN038 | 2014 | EPUB | 140 pages | 1 MB

This document has notes and solutions to the end of chapter problems from the book

An Introduction to Statistical Learning: with Applications in R
by Gareth James, Daniela Witten, Trevor Hastie, & Robert Tibshirani

This book is somewhat like an earlier book

The Elements of Statistical Learning: Data Mining, Inference, and Prediction
by Trevor Hastie, Robert Tibshirani, & Jerome Friedman

In that it discusses a number of modern methods for statistical learning. If there was any drawback to the earlier book it was that the examples were presented without algorithmic code to see how to duplicate them. At various locations on the web, people were able to reverse engineer the figures from the book and write code that duplicated many of the results. This might not have necessary since much much of the code for doing statistical machine learning has been standardized in R packages that make performing any given analysis easy to do. In ISL after each topic is introduced there are R labs that demonstrate how to use these libraries to implement the techniques discussed. The text shows actual R input and output on provided data sets. It is then easy to modify these labs to perform analysis on any data source that might be of interest, thus no tedious reverse engineering is needed!

In addition, at the end of each chapter are ``conceptual exercises'' and ``applied exercises''. In the conceptual exercises the reader is asked to reason about the techniques discussed in the chapter to ensure understanding of the presentation. In the applied exercises section the reader is asked to perform a more hands-on analysis using R and a number of provided data sets. This simulates the process one goes through when trying machine learning techniques on novel data sets. In this way, one gets a very applied view of machine learning: what to look for in a data set, how to apply various techniques, how to assess your algorithms performance, how to interpret your results, and what steps to take next.

This pages is for the kindle version of the solution manual. There is also a PDF version (at a discount) available from my website.