Perfect Powers―An Ode to Erdős
English | 2025 | ISBN: 981962598X | 198 Pages | PDF EPUB (True) | 15 MB
English | 2025 | ISBN: 981962598X | 198 Pages | PDF EPUB (True) | 15 MB
The book explores and investigates a long-standing mathematical question whether a product of two or more positive integers in an arithmetic progression can be a square or a higher power. It investigates, more broadly, if a product of two or more positive integers in an arithmetic progression can be a square or a higher power. This seemingly simple question encompasses a wealth of mathematical theory that has intrigued mathematicians for centuries. Notably, Fermat stated that four squares cannot be in arithmetic progression. Euler expanded on this by proving that the product of four terms in an arithmetic progression cannot be a square. In 1724, Goldbach demonstrated that the product of three consecutive positive integers is never square, and Oblath extended this result in 1933 to five consecutive positive integers. The book addresses a conjecture of Erdős involving the corresponding exponential Diophantine equation and discusses various number theory methods used to approach a partial solution to this conjecture.