Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Functorial Knot Theory: Categories of Tangles, Coherence, Categorical Deformations and Topological Invariants

    Posted By: step778
    Functorial Knot Theory: Categories of Tangles, Coherence, Categorical Deformations and Topological Invariants

    David N. Yetter, "Functorial Knot Theory: Categories of Tangles, Coherence, Categorical Deformations and Topological Invariants"
    2001 | pages: 238 | ISBN: 9810244436 | PDF | 12,9 mb

    Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structure naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory. This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations.

    My Links