Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Deploying Secure Data Science Applications in the Cloud: From VMs to Serverless with AWS and Google Cloud

    Posted By: DexterDL
    Deploying Secure Data Science Applications in the Cloud: From VMs to Serverless with AWS and Google Cloud

    Deploying Secure Data Science Applications in the Cloud: From VMs to Serverless with AWS and Google Cloud
    English | 2025 | ISBN: 9798868817144 | 322 pages | PDF| 21 MB



    This step-by-step guide is for Data Scientists, ML engineers, and DevOps practitioners who need to turn prototypes into secure, scalable production services on AWS and Google Cloud. With step-by-step instructions and practical examples, this book bridges the gap between building Data Science applications and Machine Learning models, and deploying them effectively in real-world scenarios

    The book begins with an introduction to essential cloud concepts, providing detailed guidance on setting up a virtual machine (VM) on AWS—and later on Google Cloud—to serve applications. This includes configuring security groups and establishing secure SSH (Secure Shell) connections using VSCode (Visual Studio Code). You will learn how to deploy a dummy HTTP Streamlit application as a foundational exercise before advancing to more complex setups.

    Subsequent chapters dive deeper into key deployment practices, such as configuring load balancers, setting up domain and subdomain names, and securing applications with SSL (Secure Sockets Layer) certificates. The book introduces more advanced deployment strategies using Docker containers and Nginx as a reverse proxy, as well as secure serverless deployments of Jenkins, Flask, and Streamlit. You’ll also learn how to train machine learning models and use Flask to build APIs that serve those models in production. In addition, the book offers hands-on demonstrations for using Jenkins as an ETL platform, Streamlit as a dashboard service, and Flask for API development. For those interested in serverless architectures, it provides detailed guidance on using AWS ECS (Elastic Container Service) Fargate and Google Cloud Run to build scalable and cost-effective solutions.

    By the end of this book, you will possess the skills to deploy and manage data science applications on the cloud with confidence. Whether you are scaling a personal project or deploying enterprise-level solutions, this book is your go-to resource for secure and seamless cloud deployments.