Tags
Language
Tags
August 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    A Primer on Semiconvex Functions in General Potential Theories

    Posted By: DexterDL
    A Primer on Semiconvex Functions in General Potential Theories

    A Primer on Semiconvex Functions in General Potential Theories
    English | 2025 | ISBN: 9783031943409 | 125 pages | PDF | 2.44 MB

    This book examines the symbiotic interplay between fully nonlinear elliptic partial differential equations and general potential theories of second order. Starting with a self-contained presentation of the classical theory of first and second order differentiability properties of convex functions, it collects a wealth of results on how to treat second order differentiability in a pointwise manner for merely semicontinuous functions. The exposition features an analysis of upper contact jets for semiconvex functions, a proof of the equivalence of two crucial, independently developed lemmas of Jensen (on the viscosity theory of PDEs) and Slodkowski (on pluripotential theory), and a detailed description of the semiconvex approximation of upper semicontinuous functions.


    The foundations of general potential theories are covered, with a review of monotonicity and duality, and the basic tools in the viscosity theory of generalized subharmonics, culminating in an account of the monotonicity-duality method for proving comparison principles. The final section shows that the notion of semiconvexity extends naturally to manifolds. A complete treatment of important background results, such as Alexandrov’s theorem and a Lipschitz version of Sard’s lemma, is provided in two appendices.


    The book is aimed at a wide audience, including professional mathematicians working in fully nonlinear PDEs, as well as master’s and doctoral students with an interest in mathematical analysis.