Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Computer Models in Biomechanics: From Nano to Macro

    Posted By: AvaxGenius
    Computer Models in Biomechanics: From Nano to Macro

    Computer Models in Biomechanics: From Nano to Macro by Gerhard A. Holzapfel, Ellen Kuhl
    English | PDF (True) | 2013 | 406 Pages | ISBN : 9400754639 | 12.9 MB

    This book contains a collection of papers that were presented at the IUTAM Symposium
    on “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011.
    It contains state-of-the-art papers on:

    - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates

    - Muscle Mechanics: modeling approaches for Ca2+–regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling

    - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling following aortic coarctation, patient-specific surgery planning for the Fontan procedure

    - Multiphasic Models: solutes in hydrated biological tissues, reformulation of mixture theory-based poroelasticity for interstitial tissue growth, tumor therapies of brain tissue, remodeling of microcirculation in liver lobes, reactions, mass transport and mechanics of tumor growth, water transport modeling in the brain, crack modeling of swelling porous media

    - Morphogenesis, Biological Tissues and Organs: mechanisms of brain morphogenesis, micromechanical modeling of anterior cruciate ligaments, mechanical characterization of the human liver, in vivo validation of predictive models for bone remodeling and mechanobiology, bridging scales in respiratory mechanics.
    Thanks For Buying/Renewing Premium From My Blog Links To Support
    Without You And Your Support We Can't Continue