Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    Practical Data Science with Jupyter: Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Mach

    Posted By: arundhati
    Practical Data Science with Jupyter: Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Mach

    PRATEEK GUPTA, "Practical Data Science with Jupyter: Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Mach"
    English | ISBN: 9389898064 | 2021 | 360 pages | PDF | 19 MB

    Solve business problems with data-driven techniques and easy-to-follow Python examples
    Key Features
    Essential coverage on statistics and data science techniques.
    Exposure to Jupyter, PyCharm, and use of GitHub.
    Real use-cases, best practices, and smart techniques on the use of data science for data applications.
    Description
    This book begins with an introduction to Data Science followed by the Python concepts. The readers will understand how to interact with various database and Statistics concepts with their Python implementations. You will learn how to import various types of data in Python, which is the first step of the data analysis process. Once you become comfortable with data importing, you will clean the dataset and after that will gain an understanding about various visualization charts. This book focuses on how to apply feature engineering techniques to make your data more valuable to an algorithm. The readers will get to know various Machine Learning Algorithms, concepts, Time Series data, and a few real-world case studies. This book also presents some best practices that will help you to be industry-ready.

    This book focuses on how to practice data science techniques while learning their concepts using Python and Jupyter. This book is a complete answer to the most common question that how can you get started with Data Science instead of explaining Mathematics and Statistics behind the Machine Learning Algorithms.
    What you will learn
    Rapid understanding of Python concepts for data science applications.
    Understand and practice how to run data analysis with data science techniques and algorithms.
    Learn feature engineering, dealing with different datasets, and most trending machine learning algorithms.
    Become self-sufficient to perform data science tasks with the best tools and techniques.
    Who this book is for
    This book is for a beginner or an experienced professional who is thinking about a career or a career switch to Data Science. Each chapter contains easy-to-follow Python examples.
    Table of Contents
    1. Data Science Fundamentals
    2. Installing Software and System Setup
    3. Lists and Dictionaries
    4. Package, Function, and Loop
    5. NumPy Foundation
    6. Pandas and DataFrame
    7. Interacting with Databases
    8. Thinking Statistically in Data Science
    9. How to Import Data in Python?
    10. Cleaning of Imported Data
    11. Data Visualization
    12. Data Pre-processing
    13. Supervised Machine Learning
    14. Unsupervised Machine Learning
    15. Handling Time-Series Data
    16. Time-Series Methods
    17. Case Study-1
    18. Case Study-2
    19. Case Study-3
    20. Case Study-4
    21. Python Virtual Environment
    22. Introduction to An Advanced Algorithm - CatBoost
    23. Revision of All Chapters’ Learning
    About the Author
    Prateek Gupta is a Data Enthusiast and loves data-driven technologies. Prateek has completed his B.Tech in Computer Science & Engineering and he is currently working as a Data Scientist in an IT company. Prateek has a total 9 years of experience in the software industry, and currently, he is working in the computer vision area. Prateek has implemented various end-to-end Data Science projects for fishing, winery, and ecommerce clients. His implemented object detection and recognition models and product recommendation engines have solved many business problems of various clients. His keen area of interest is in natural language processing and computer vision. In his leisure time, he writes posts about artificial intelligence in his blog.

    Blog links: http://dsbyprateekg.blogspot.com/
    LinkedIn Profile: https://www.linkedin.com/in/prateek-gupta-64203354/