Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Deep Learning in Neural Networks: An Overview by Juergen Schmidhuber

    Posted By: lengen
    Deep Learning in Neural Networks: An Overview by Juergen Schmidhuber

    Deep Learning in Neural Networks: An Overview by Juergen Schmidhuber
    English | October 2014 | ISBN: N/A | 206 Pages | PDF | 1.1 MB

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. It reviews deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
    This is the preprint of an invited Deep Learning (DL) overview. One of its goals is to assign credit to those who contributed to the present state of the art. It acknowledges the limitations of attempting to achieve this goal. The DL research community itself may be viewed as a continually evolving, deep network of scientists who have influenced each other in complex ways. Starting from recent DL results, It tried to trace back the origins of relevant ideas through the past half century and beyond, sometimes using "local search" to follow citations of citations backwards in time. Since not all DL publications properly acknowledge earlier relevant work, additional global search strategies were employed, aided by consulting numerous neural network experts. As a result, the present preprint mostly consists of references.