Tags
Language
Tags
November 2025
Su Mo Tu We Th Fr Sa
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity

    Posted By: insetes
    Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity

    Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity By Jonathan M. Borwein, Peter B. Borwein
    1998 | 428 Pages | ISBN: 047131515X | DJVU | 11 MB


    Presents new research revealing the interplay between classical analysis and modern computation and complexity theory. Two intimately interwoven threads run though the text: the arithmetic-geometric mean (AGM) iteration of Gauss, Lagrange, and Legendre and the calculation of pi[l.c. Greek letter]. These two threads are carried in three directions. The first leads to 19th century analysis, in particular, the transformation theory of elliptic integrals, which necessitates a brief discussion of such topics as elliptic integrals and functions, theta functions, and modular functions. The second takes the reader into the domain of analytic complexity - Just how intrinsically difficult is it to calculate algebraic functions, elementary functions and constants, and the familiar functions of mathematical physics? The answers are surprising, for the familiar methods are often far from optimal. The third direction leads through applications and ancillary material - particularly the rich interconnections between the function theory and the number theory. Included are Rogers-Ramanujan identities, algebraic series for pi[l.c. Greek letter], results on sums of two and four squares, the transcendence of pi[l.c. Greek letter] and e[ital.], and a discussion of Madelung's constant, lattice sums, and elliptic invariants. Exercises.