Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Stirling Polynomials in Several Indeterminates

    Posted By: readerXXI
    Stirling Polynomials in Several Indeterminates

    Stirling Polynomials in Several Indeterminates
    by Alfred Schreiber
    English | 2021 | ISBN: 3832552502 | 164 Pages | PDF | 1.21 MB

    The classical exponential polynomials, today commonly named after E.,T. Bell, have a wide range of remarkable applications in Combinatorics, Algebra, Analysis, and Mathematical Physics. Within the algebraic framework presented in this book they appear as structural coefficients in finite expansions of certain higher-order derivative operators. In this way, a correspondence between polynomials and functions is established, which leads (via compositional inversion) to the specification and the effective computation of orthogonal companions of the Bell polynomials. Together with the latter, one obtains the larger class of multivariate `Stirling polynomials'. Their fundamental recurrences and inverse relations are examined in detail and shown to be directly related to corresponding identities for the Stirling numbers. The following topics are also covered: polynomial families that can be represented by Bell polynomials; inversion formulas, in particular of Schlomilch-Schlafli type; applications to binomial sequences; new aspects of the Lagrange inversion, and, as a highlight, reciprocity laws, which unite a polynomial family and that of orthogonal companions. Besides a Mathematica(R) package and an extensive bibliography, additional material is compiled in a number of notes and supplements.


    If you want to support my blog, then you can buy a premium account through any of my files (i.e. on the download page of my book). In this case, I get a percent of sale and can continue to delight you with new books!