Tags
Language
Tags
September 2025
Su Mo Tu We Th Fr Sa
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Soft Computing Applications in Industry

    Posted By: AvaxGenius
    Soft Computing Applications in Industry

    Soft Computing Applications in Industry by Bhanu Prasad
    English | PDF | 2008 | 383 Pages | ISBN : 3540774645 | 9.7 MB

    Softcomputing techniques play a vital role in the industry. This book presents several important papers presented by some of the well-known scientists from all over the globe. The application domains discussed in this book include: agroecology, bioinformatics, branched fluid-transport network layout design, dam scheduling, data analysis and exploration, detection of phishing attacks, distributed terrestrial transportation, fault detection of motors, fault diagnosis of electronic circuits, fault diagnosis of power distribution systems, flood routing, hazard sensing, health care, industrial chemical processes, knowledge management in software development, local multipoint distribution systems, missing data estimation, parameter calibration of rainfall intensity models, parameter identification for systems engineering, petroleum vessel mooring, query answering in P2P systems, real-time strategy games, robot control, satellite heat pipe design, monsoon rainfall forecasting, structural design, tool condition monitoring, vehicle routing, water network design, etc.

    The softcomputing techniques presented in this book are on (or closely related to): ant-colony optimization, artificial immune systems, artificial neural networks, Bayesian models, case-based reasoning, clustering techniques, differential evolution, fuzzy classification, fuzzy neural networks, genetic algorithms, harmony search, hidden Markov models, locally weighted regression analysis, probabilistic principal component analysis, relevance vector machines, self-organizing maps, other machine learning and statistical techniques, and the combinations of the above techniques.
    Without You And Your Support We Can’t Continue
    Thanks For Buying Premium From My Blog Links For Support