Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    New Developments in Statistical Information Theory Based on Entropy and Divergence Measures

    Posted By: AvaxGenius
    New Developments in Statistical Information Theory Based on Entropy and Divergence Measures

    New Developments in Statistical Information Theory Based on Entropy and Divergence Measures by Leandro Pardo
    English | PDF | 2019 | 346 Pages | ISBN : 3038979368 | 5.73 MB

    This book presents new and original research in Statistical Information Theory, based on minimum divergence estimators and test statistics, from a theoretical and applied point of view, for different statistical problems with special emphasis on efficiency and robustness.
    Divergence statistics, based on maximum likelihood estimators, as well as Wald's statistics, likelihood ratio statistics and Rao's score statistics, share several optimum asymptotic properties, but are highly non-robust in cases of model misspecification under the presence of outlying observations. It is well-known that a small deviation from the underlying assumptions on the model can have drastic effect on the performance of these classical tests. Specifically, this book presents a robust version of the classical Wald statistical test, for testing simple and composite null hypotheses for general parametric models, based on minimum divergence estimators.
    Without You And Your Support We Can’t Continue
    Thanks For Buying Premium From My Links For Support