Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Twisted Isospectrality, Homological Wideness, and Isometry: A Sample of Algebraic Methods in Isospectrality

    Posted By: AvaxGenius
    Twisted Isospectrality, Homological Wideness, and Isometry: A Sample of Algebraic Methods in Isospectrality

    Twisted Isospectrality, Homological Wideness, and Isometry: A Sample of Algebraic Methods in Isospectrality by Gunther Cornelissen , Norbert Peyerimhoff
    English | PDF EPUB (True) | 2023 | 120 Pages | ISBN : 3031277031 | 7.6 MB

    The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether one can find finitely many natural operators that determine whether two such manifolds are isometric (coverings).

    The methods outlined in the book fit into the tradition of the famous work of Sunada on the construction of isospectral, non-isometric manifolds, and thus do not focus on analytic techniques, but rather on algebraic methods: in particular, the analogy with constructions in number theory, methods from representation theory, and from algebraic topology.
    The main goal of the book is to present the construction of finitely many “twisted” Laplace operators whose spectrum determines covering equivalence of two Riemannian manifolds.

    The book has a leisure pace and presents details and examples that are hard to find in the literature, concerning: fiber products of manifolds and orbifolds, the distinction between the spectrum and the spectral zeta function for general operators, strong isospectrality, twisted Laplacians, the action of isometry groups on homology groups, monomial structures on group representations, geometric and group-theoretical realisation of coverings with wreath products as covering groups, and “class field theory” for manifolds. The book contains a wealth of worked examples and open problems. After perusing the book, the reader will have a comfortable working knowledge of the algebraic approach to isospectrality.
    Without You And Your Support We Can’t Continue
    Thanks For Buying Premium From My Blog Links For Support