Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Smooth Manifolds and Observables

    Posted By: AvaxGenius
    Smooth Manifolds and Observables

    Smooth Manifolds and Observables by Jet Nestruev
    English | EPUB | 2020 | 441 Pages | ISBN : 3030456498 | 39.25 MB

    This textbook demonstrates how differential calculus, smooth manifolds, and commutative algebra constitute a unified whole, despite having arisen at different times and under different circumstances. Motivating this synthesis is the mathematical formalization of the process of observation from classical physics. A broad audience will appreciate this unique approach for the insight it gives into the underlying connections between geometry, physics, and commutative algebra.
    The main objective of this book is to explain how differential calculus is a natural part of commutative algebra. This is achieved by studying the corresponding algebras of smooth functions that result in a general construction of the differential calculus on various categories of modules over the given commutative algebra. It is shown in detail that the ordinary differential calculus and differential geometry on smooth manifolds turns out to be precisely the particular case that corresponds to the category of geometric modules over smooth algebras. This approach opens the way to numerous applications, ranging from delicate questions of algebraic geometry to the theory of elementary particles.

    Smooth Manifolds and Observables is intended for advanced undergraduates, graduate students, and researchers in mathematics and physics. This second edition adds ten new chapters to further develop the notion of differential calculus over commutative algebras, showing it to be a generalization of the differential calculus on smooth manifolds. Applications to diverse areas, such as symplectic manifolds, de Rham cohomology, and Poisson brackets are explored. Additional examples of the basic functors of the theory are presented alongside numerous new exercises, providing readers with many more opportunities to practice these concepts.
    i will be very grateful when you support me and buy Or Renew Your Premium from my Blog links
    i appreciate your support Too much as it will help me to post more and more

    Without You And Your Support We Can’t Continue
    Thanks For Buying Premium From My Links For Support