Tags
Language
Tags
December 2024
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 1 2 3 4

Surface Plasmon Resonance Sensors: A Materials Guide to Design, Characterization, Optimization, and Usage (Repost)

Posted By: DZ123
Surface Plasmon Resonance Sensors: A Materials Guide to Design, Characterization, Optimization, and Usage (Repost)

Leiva Casemiro Oliveira, Antonio Marcus Nogueira Lima, Carsten Thirstrup, "Surface Plasmon Resonance Sensors: A Materials Guide to Design, Characterization, Optimization, and Usage"
English | 2019 | ISBN: 3030174859 | PDF | pages: 332 | 33.8 mb

This significantly extended second edition addresses the important physical phenomenon of Surface Plasmon Resonance (SPR) or Surface Plasmon Polaritons (SPP) in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and described in detail. The text covers a selection of nanometer thin metal films, ranging from free-electron to the platinum-type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Whereas the first edition treated solely the metal-liquid interface, the SP-resonance conditions considered here are expanded to cover the metal-gas interface in the angular and wavelength interrogation modes, localized and long-range SP's and the influence of native oxidic ad-layers in the case of non-noble metals. Furthermore, a selection of metal grating structures that allow SP excitation is presented, as are features of radiative SP's. 

Finally, this treatise includes as-yet hardly explored SPR features of selected metal–metal and metal–dielectric superlattices. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.